留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于3D点云语义地图表征的智能车定位

朱云涛 李飞 胡钊政 吴华伟

朱云涛, 李飞, 胡钊政, 吴华伟. 基于3D点云语义地图表征的智能车定位[J]. 交通信息与安全, 2021, 39(6): 143-152. doi: 10.3963/j.jssn.1674-4861.2021.06.017
引用本文: 朱云涛, 李飞, 胡钊政, 吴华伟. 基于3D点云语义地图表征的智能车定位[J]. 交通信息与安全, 2021, 39(6): 143-152. doi: 10.3963/j.jssn.1674-4861.2021.06.017
ZHU Yuntao, LI Fei, HU Zhaozheng, WU Huawei. A Localization Method for Intelligent Vehicles Based on Semantic Map Representation Extracted from 3D Cloud Points[J]. Journal of Transport Information and Safety, 2021, 39(6): 143-152. doi: 10.3963/j.jssn.1674-4861.2021.06.017
Citation: ZHU Yuntao, LI Fei, HU Zhaozheng, WU Huawei. A Localization Method for Intelligent Vehicles Based on Semantic Map Representation Extracted from 3D Cloud Points[J]. Journal of Transport Information and Safety, 2021, 39(6): 143-152. doi: 10.3963/j.jssn.1674-4861.2021.06.017

基于3D点云语义地图表征的智能车定位

doi: 10.3963/j.jssn.1674-4861.2021.06.017
基金项目: 

国家重点研发计划项目 2018YFB1600801

武汉市科技局项目 2020010601012165

武汉市科技局项目 2020010602011973

武汉市科技局项目 2020010602012003

重庆市自然科学基金项目 cstc2020jcyj-msxmX0978

详细信息
    作者简介:

    朱云涛(1997—), 硕士研究生. 研究方向: 计算机视觉、激光SLAM. E-mail: zyt941292303@whut.edu.cn

    通讯作者:

    胡钊政(1979—), 博士, 教授. 研究方向: 计算机视觉、智能车路协同. E-mail: zzhu@whut.edu.cn

  • 中图分类号: U495

A Localization Method for Intelligent Vehicles Based on Semantic Map Representation Extracted from 3D Cloud Points

  • 摘要: 为提高智能车节点定位准确率, 研究了基于3D点云语义地图表征的智能车定位方法。该方法分为3个部分: ①基于三维激光点云的语义分割, 包括地面分割, 交通标志牌分割和杆状语义目标分割; ②面向智能车的点云语义地图表征, 利用分割的语义目标投影, 生成带权有向图, 语义路, 语义编码, 再以语义编码和高精度GPS的全局位置组成语义地图表征模型; ③基于语义表征模型的智能车定位, 包括基于GPS匹配的粗定位和基于语义编码渐进匹配的节点定位。实验在3种长度不同、复杂度不同的道路场景下进行, 节点定位准确率分别为98.5%, 97.6%和97.8%, 结果表明所提出的定位方法节点定位准确率高、鲁棒性强且适用于不同的道路场景。

     

  • 图  1  系统流程图

    Figure  1.  Flow of the system

    图  2  俯仰角评估示意图

    Figure  2.  Schematic of pitch angle evaluation

    图  3  交通标志牌粗分割

    Figure  3.  Coarse segmentation of traffic signs

    图  4  交通标志牌精分割

    Figure  4.  Precise segmentation of traffic signs

    图  5  切片生长法分割

    Figure  5.  Segmentation of slice growth

    图  6  点云语义地图模型

    Figure  6.  Semantic map modeling from point clouds

    图  7  语义俯视投影图

    Figure  7.  Semantic overhead projection

    图  8  语义带权有向图

    Figure  8.  Semantically weighted digraph

    图  9  场景语义编码

    Figure  9.  Scene semantic coding

    图  10  GPS粗定位

    Figure  10.  GPS coarse positioning

    图  11  节点级定位

    Figure  11.  Node-level Localization

    图  12  实验平台和数据集路线

    Figure  12.  Experimental platform and data set route

    图  13  节点的地面分割结果

    Figure  13.  Ground segmentation result of a node

    图  14  节点的交通标志牌分割结果

    Figure  14.  Traffic-sign segmentation of a node

    图  15  节点的杆状语义分割结果

    Figure  15.  Pole-shaped object segmentation result of a node

    图  16  地图节点全局位置轨迹

    Figure  16.  Global positional trajectory of map nodes

    表  1  数据集1~3交通标志牌语义分割对比

    Table  1.   Comparative experiment results of data set 1~3

    数据集 方法 TPs/个 FPs/个 FNs/个 precisions/% completes/%
    1 本文 25 1 1 96.2 96.2
    文献[17] 24 1 2 96.0 92.3
    2 本文 40 1 2 97.6 95.2
    文献[17] 39 2 3 95.1 92.9
    3 本文 54 4 3 92.9 94.7
    文献[17] 52 5 5 91.2 91.2
    下载: 导出CSV

    表  2  数据集1~3杆状语义分割对比

    Table  2.   Comparative experiment results of data set 1~3

    数据集 方法 TPp/个 FPp/个 FNp/个 precisionp/% completep/%
    1 本文 127 3 5 97.7 96.2
    文献[18] 120 4 12 96.8 90.1
    2 本文 202 5 11 97.6 94.8
    文献[18] 187 2 26 95.9 87.8
    3 本文 310 11 16 96.6 96.2
    文献[18] 283 17 43 94.3 86.8
    下载: 导出CSV

    表  3  数据集1~3定位精度对比

    Table  3.   Comparative experiment results of data set 1~3

    数据集 方法 正确个数 错误个数 准确率/%
    1 本文 578 9 98.5
    文献[19] 431 156 73.4
    2 本文 969 24 97.6
    文献[19] 669 324 67.4
    3 本文 1504 34 97.8
    文献[19] 1101 437 71.6
    下载: 导出CSV
  • [1] 张帆, 胡钊政, 陈佳良, 等. 基于Wi-Fi指纹与视觉融合的室内交通定位[J]. 交通信息与安全, 2019, 37(3): 61-69+100. doi: 10.3963/j.issn.1674-4861.2019.03.008

    ZHANG Fan, HU Zhaozheng, CHEN Jialiang, et al. Indoor traffic positioning based on Wifi fingerprint and vision fusion[J]. Journal of Transport Information and Safety, 2019, 37(3): 61-69+100. (in Chinese). doi: 10.3963/j.issn.1674-4861.2019.03.008
    [2] WOLCOTT R W, EUSTICE R M. Robust LiDAR localization using multiresolution Gaussian mixture maps for autonomous driving[J]. The International Journal of Robotics Research, 2017, 36(3): 292-319. doi: 10.1177/0278364917696568
    [3] MUR-ARTAL R, TARDOS J D. ORB-SLAM2: An open-source SLAM system for monocular stereo and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. doi: 10.1109/TRO.2017.2705103
    [4] 杨东凯, 寇艳红, 吴今培, 等. 智能交通系统中的地图匹配定位方法[J]. 交通运输系统工程与信息, 2003(3): 38-43. doi: 10.3969/j.issn.1009-6744.2003.03.008

    YANG Dongkai, KOU Yanhong, WU Jinpei, et al. A map-matching method in intelligent transport systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2003, 3(3): 38-43. (in Chinese). doi: 10.3969/j.issn.1009-6744.2003.03.008
    [5] ZHANG Ji, SINGH S. LOAM: LiDAR odometry and mapping in real-time[C]. Robotics: Science and Systems Conference, Berkeley, California, USA: University of California, Berkeley, 2014.
    [6] KOIDE K. A Portable 3D LIDAR-based system for long-term and wide-area people behavior measurement[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 1-13. http://www.researchgate.net/publication/331224140_A_Portable_3D_LIDAR-based_System_for_Long-term_and_Wide-area_People_Behavior_Measurement
    [7] THRUN S, MONTEMERLO M, Dahlkamp H, et al. Stanley: The robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147
    [8] ZERMAS D, IZZAT I, PAPANIKOLOPOULOS N. Fast segmentation of 3D point clouds: A paradigm on LiDAR data for autonomous vehicle applications[C]. International Conference on Robotics and Automation(ICRA), Singapore: IEEE, 2017.
    [9] 彭泽民, 叶青. 自然环境下交通标志牌的检测与识别[J]. 电子测试, 2020(1): 45-47+92. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202001015.htm

    PENG Zemin, YE Qing. Detection and identification of traffic signs in natural environment[J]. Electronic Test, 2020(1): 45-47+92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202001015.htm
    [10] 李游. 基于车载激光扫描数据的城市街道信息提取技术研究[D]. 武汉: 武汉大学, 2017.

    LI You. Research on street information detection from mobile laser scanning data in urban areas[D]. Wuhan: Wuhan University, 2017. (in Chinese).
    [11] KUZNETSOVA K, SAMSONOVICH A V. Semantic-map-base dapproach to designing an insight problem solving assistant[J]. Procedia Computer Science, 2018(123): 258-264. http://www.sciencedirect.com/science/article/pii/S1877050918300413/pdf?md5=139ba648e1b132f94671dd265cc50796&pid=1-s2.0-S1877050918300413-main.pdf
    [12] DUBE R, DUGAS D, STUMM E, et al. SegMatch: Segment based place recognition in 3D point clouds[C]. International Conference on Robotics and Automation(ICRA), Singapore: IEEE, 2017.
    [13] LIU Yu, PETILLOT Y, LANE D, et al. Global localization with object-level semantics and topology[C]. International Conference on Robotics and Automation(ICRA), Montreal, QC, Canada: IEEE, 2019.
    [14] CHEN X, MILIOTO A, PALAZZOLO E, et al. SuMa++: Efficient LiDAR-based semantic SLAM[C]. International Conference on Intelligent Robots and Systems(IROS), Macau, China: IEEE, 2019.
    [15] GOLOVINSKIY A, FUNKHOUSER T. Min-cut based segmentation of point clouds[C]. IEEE International Conference on Computer Vision Workshops, Kyoto, Japan: IEEE, 2009.
    [16] 刘亚坤, 李永强, 刘会云, 等. 基于改进RANSAC算法的复杂建筑物屋顶点云分割[J]. 地球信息科学学报, 2021, 23(8): 1497-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202108014.htm

    LIU Yakun, LI Yongqiang, LIU Huiyun, et al. An improved RANSAC algorithm for point cloud segmentation of complex building roofs[J]. Journal of Geo-information Science, 2021, 23(8): 1497-1507. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202108014.htm
    [17] AI C, TSAI Y J. Critical assessment of an enhanced traffic sign detection method using mobile LiDAR and INS technologies[J]. Journal of Transportation Engineering, 2015, 141(5): 1-12.
    [18] PU Shi, RUTZINGER M, VOSSELMAN G, et al. Recognizing basic structures from mobile laser scanning data for road inventory studies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): S28-S39. doi: 10.1016/j.isprsjprs.2011.08.006
    [19] TAO Qianwen, HU Zhaozheng, HUANG Gang, et al. LiDAR-only vehicle localization based on map generation[C]. Transportation Research Board(TRB), 2019 Annual Meeting, Washington, D. C., America: National Academies of USA, 2019.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  405
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 网络出版日期:  2022-01-12

目录

    /

    返回文章
    返回