留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于室内标志的视觉定位方法

黄刚 蔡浩 邓超 何志 许宁波

黄刚, 蔡浩, 邓超, 何志, 许宁波. 基于室内标志的视觉定位方法[J]. 交通信息与安全, 2021, 39(6): 172-179. doi: 10.3963/j.jssn.1674-4861.2021.06.020
引用本文: 黄刚, 蔡浩, 邓超, 何志, 许宁波. 基于室内标志的视觉定位方法[J]. 交通信息与安全, 2021, 39(6): 172-179. doi: 10.3963/j.jssn.1674-4861.2021.06.020
HUANG Gang, CAI Hao, DENG Chao, HE Zhi, XU Ningbo. A Visual Localization Method Based on Indoor Signs[J]. Journal of Transport Information and Safety, 2021, 39(6): 172-179. doi: 10.3963/j.jssn.1674-4861.2021.06.020
Citation: HUANG Gang, CAI Hao, DENG Chao, HE Zhi, XU Ningbo. A Visual Localization Method Based on Indoor Signs[J]. Journal of Transport Information and Safety, 2021, 39(6): 172-179. doi: 10.3963/j.jssn.1674-4861.2021.06.020

基于室内标志的视觉定位方法

doi: 10.3963/j.jssn.1674-4861.2021.06.020
基金项目: 

国家自然科学基金青年基金项目 52002298

湖北省自然科学基金青年项目 2020CFB118

湖北省教育厅科学技术研究计划青年人才项目 Q20201107

详细信息
    作者简介:

    黄刚(1989—), 博士, 讲师. 研究方向: 室内定位、智能汽车感知、场景建模. E-mail: ghuang@wust.edu.cn

    通讯作者:

    蔡浩(1989—), 博士, 讲师. 研究方向: 智能交通系统、安全辅助驾驶、智能车定位、驾驶行为分析. E-mail: caihao@wtu.edu.cn

  • 中图分类号: U4

A Visual Localization Method Based on Indoor Signs

  • 摘要: 为解决室内交通场景中智能汽车和移动机器人进行定位计算的问题, 利用室内场景中已存在的各类标志, 引入BEBLID算法, 提出1种视觉定位方法。对BEBLID算法进行改进, 赋予其对图像整体进行特征表征的能力。将定位过程分解为离线阶段和在线阶段, 离线阶段构建场景标志地图。在线阶段中, 首先通过全局特征匹配, 引入KNN方法确定最近节点和最近图像。通过局部特征匹配获得特征点一一对应关系。利用场景特征地图中存储的标志坐标信息, 进行度量计算, 获取当前位置信息。在教学楼、办公楼和室内停车场场景进行实验, 实验中对场景标志的正确识别率达到90%, 平均定位误差小于1 m, 与传统方法相比, 同一样本下识别精度相对提升约10%, 实验验证了算法的有效性。

     

  • 图  1  方法流程图

    Figure  1.  Flow of the proposed method

    图  2  BEBLID全局与局部描述符示例

    Figure  2.  Examples of holistic and local BEBLID features

    图  3  实验场景中部分标志图像

    Figure  3.  Sign images from experiment scenes

    图  4  第一类场景标志识别结果

    Figure  4.  Recognition results of the signs in the class-1 scene

    图  5  局部BEBLID特征匹配效果

    Figure  5.  Matching performance of local BEBLID features

    图  6  第一类场景定位误差

    Figure  6.  Localization error in the class-1 scene

    图  7  第二类场景标志识别结果

    Figure  7.  Recognition results of the signs in the class-2 scene

    图  8  第二类场景定位误差

    Figure  8.  Localization error in the class-2 scene

    表  1  计算效率对比实验结果

    Table  1.   Comparison experiments of calculation efficacy  单位: ms

    方法 场景1 场景2
    本文方法 92.0 95.3
    ORB[15] 92.7 96.4
    下载: 导出CSV

    表  2  第一类场景定位误差

    Table  2.   Localization error in the class-1 scene

    场景 平均误差/m 标准偏差/m 小于1 m的概率/% 耗时/ms
    场景1 0.80 1.38 87 152.0
    场景2 0.82 1.41 87
    下载: 导出CSV
  • [1] YASSIN A, NASSER Y, AWAD M, et al. Recent advances in indoor localization: a survey on theoretical approaches and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(99): 1327-1346. http://www.researchgate.net/profile/Ran_Liu54/publication/311167066_Recent_Advances_in_Indoor_Localization_A_Survey_on_Theoretical_Approaches_and_Applications/links/5a4cad400f7e9b8284c3fc99/Recent-Advances-in-Indoor-Localization-A-Survey-on-Theoretical-Approaches-and-Applications.pdf
    [2] LI B, MUNOZ J P, RONG X, et al. Vision-based mobile indoor assistive navigation aid for blind people[J]. IEEE Transactions on Mobile Computing, 2019, 18(3): 702-714. doi: 10.1109/TMC.2018.2842751
    [3] ZOU H, CHEN C L, LI M, et al. Adversarial learning-enabled automatic WiFi indoor radio map construction and adaptation with mobile robot[J]. IEEE Internet of Things Journal, 2020, 7(8): 6946-6954. doi: 10.1109/JIOT.2020.2979413
    [4] HUANG Y, ZHAO J, HE X, et al. Vision-based semantic mapping and localization for autonomous indoor parking[C]. 2018 IEEE Intelligent Vehicles Symposium(IV), Changshu, China: IEEE, 2018.
    [5] LAOUDIAS C, MOREIRA A, KIM S, et al. A survey of enabling technologies for network localization, tracking, and navigation[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3607-3644.
    [6] HERNÁNDEZ N, HUSSEIN A, CRUZADO D, et al. Applying low cost WiFi-based localization to in-campus autonomous vehicles[C]. 2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC), Yokohama, Japan: IEEE, 2017.
    [7] 赵国旗, 杨明, 王冰, 等. 基于智能终端的移动机器人室内外无缝定位方法[J]. 上海交通大学学报, 2018, 52(1): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201801005.htm

    ZHAO Guoqi, YANG Ming, WANG Bing, et al. Mobile robot seamless localization based on smart device in indoor and outdoor environments[J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 13-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201801005.htm
    [8] WANG W, MARELLI D, FU M. Multiple-vehicle localization using maximum likelihood Kalman filtering and ultra-wideband signals[J]. IEEE Sensors Journal, 2021, 21(4): 4949-4956. doi: 10.1109/JSEN.2020.3031377
    [9] 王博远, 刘学林, 蔚保国, 等. WiFi指纹定位中改进的加权k近邻算法[J]. 西安电子科技大学学报, 2019, 46(5): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201905007.htm

    WANG Boyuan, LIU Xuelin, YU Baoguo, et al. Improved weighted k-nearest neighbor algorithm for wifi fingerprint positioning[J]. Journal of Xidian University, 2019, 46(5): 41-47. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201905007.htm
    [10] 杨保, 张鹏飞, 李军杰, 等. 一种基于蓝牙的室内定位导航技术[J]. 测绘科学, 2019, 44(6): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201906013.htm

    YANG Bao, ZHANG Pengfei, LI Junjie, et al. An indoor positioning and navigation technology based on bluetooth[J]. Science of Surveying and Mapping, 2019, 44(6): 89-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201906013.htm
    [11] SADRUDDIN H, MAHMOUD A, ATIA M M. Enhancing body-mounted LiDAR SLAM using an IMU-based pedestrian dead reckoning(PDR)model[C]. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems(MWSCAS), Springfield, MA, USA: IEEE, 2020.
    [12] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multi-map SLAM[R/OL]. (2021-5)[2021-10-8]. https://ieeexplore.ieee.org/document/9440682.
    [13] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]. IEEE International Conference on Computer Vision, Barcelona, Spain: IEEE, 2011.
    [14] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORBSLAM: A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671
    [15] 胡月志, 李娜, 胡钊政, 等. 基于ORB全局特征与最近邻的交通标志快速识别算法[J]. 交通信息与安全, 2016, 34(1): 23-29. doi: 10.3963/j.issn.1674-4861.2016.01.006

    HU Yuezhi, LI Na, HU Zhaozheng, et al. Fast sign recognition based on ORB holistic feature and k-nearest neighbor method[J]. Journal of Transport Information and Safety, 2016, 34(1): 23-29. (in Chinese). doi: 10.3963/j.issn.1674-4861.2016.01.006
    [16] 陶倩文, 胡钊政, 黄刚, 等. 基于消防安全疏散标志的高精度室内视觉定位[J]. 交通信息与安全, 2018, 36(2): 39-46+60. doi: 10.3963/j.issn.1674-4861.2018.02.006

    TAO Qianwen, HU Zhaozheng, HUANG Gang, et al. High-accuracy vision-based indoor positioning using building safety evacuation signs[J]. Journal of Transport Information and Safety, 2018, 36(2): 39-46+60. (in Chinese). doi: 10.3963/j.issn.1674-4861.2018.02.006
    [17] BAY H, TUYTELAARS T, VAN GOOL L. Surf: speeded up robust features[C]. European Conference on Computer Vision, Graz, Austria: ECCV, 2006.
    [18] ELLOUMI W, LATOUI A, CANALS R, et al. Indoor pedestrian localization with a smartphone: a comparison of inertial and vision-based methods[J]. IEEE Sensors Journal, 2016, 16(13): 5376-5388. doi: 10.1109/JSEN.2016.2565899
    [19] SUÁREZ I, SFEIR G, BUENAPOSADA J M, et al. BEBLID: boosted efficient binary local image descriptor[J]. Pattern Recognition Letters, 2020(133): 366-372. http://www.sciencedirect.com/science/article/pii/S0167865520301252
    [20] ZHANG Zhengyou. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  405
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-23
  • 网络出版日期:  2022-01-12

目录

    /

    返回文章
    返回