A Method for Optimizing Geometric Design and Signal Timing for Contraflow Left-turn Lanes with Double-exits
-
摘要: 为解决单开口式(即仅有1个预信号开口)逆流左转车道(即通过预信号控制动态借用的出口车道)的长度与左转交通需求匹配效果不佳的问题,通过对单开口式逆流左转车道的设计进行分析,提出1种双开口式(即设置2个预信号开口)逆流左转车道的设计及控制方法。结合逆流左转车道的车辆运行规则,分析单开口式、双开口式逆流左转车道上车辆排队行为特征差异,构建逆流左转车道通行能力计算模型和延误计算模型。考虑主预信号协调控制、饱和度、交通波传递等约束条件,以车均延误最小为优化目标,采用0-1变量表示各个预信号开口是否启用,将常规设计、单开口式、双开口式信号配时整合到1个统一的混合整数非线性规划优化模型中,并给出逆流左转车道长度的设计依据。通过案例分析发现:①在逆流左转车道长度为80 m时,交叉口通行能力提升幅度最大;②当通行能力满足需求时,逆流左转车道长度越短,交叉口延误降低越明显;③若为保证通行能力而采用较长的逆流左转车道时,双开口式逆流左转车道通行效率优于单开口式;④综合考虑延误、通行能力等因素,单开口式逆流左转车道长度宜设置为40~60 m,而双开口式宜设置为80 m左右;⑤双开口式逆流左转车道可根据需要选择是否启用每个预信号开口,应用较为灵活,适用于各种流量场景。Abstract: To solve the problem of ineffective match between the lengths of contraflow left-turn lanes(i.e., dynamic borrowed exit lines through pre-signal control)with single-exit(i.e., one pre-signal exit only)and corresponding traffic demand, a method for optimizing the geometric design and signal timing for contraflow left-turn lanes with double-exits(i.e., two pre-signal exits)is proposed after analyzing the design of contraflow left-turn lanes with single-exit. Based on the observed maneuvers of vehicles in the contraflow left-turn lanes and queuing behaviors of vehicles in left-turn lanes with single-exit and double-exits, their capacity and delay estimation models are developed, respectively. The conventional design methods for signal timing of single-exit and double-exits are integrated into a unified optimization model by introducing a dummy variable to indicate whether each pre-signal exit is enabled. Considering the constraints of coordination between main and pre-signals, saturation and traffic wave transfer, the objective of the model is to minimize the delay per vehicle. Through this model, the basis for designing the length of contraflow left-turn lanes can be obtained. Finally, a case study is carried out, the results indicate that: ①the improvement of intersection capacity is largest when the length of contraflow left-turn lanes is 80 m.②When the capacity of the roads meets traffic demand, the shorter the length of contraflow left-turn lanes, the more significant the reduction of traffic delay at the intersection.③If longer contraflow left-turn lanes are adopted to maintain road capacity, the benefit of contraflow left-turn lanes with double-exits are better than lanes with single-exit.④Considering traffic delay, capacity, and other factors, the length of contraflow left-turn lanes with single-exit is suggested to be 40 to 60 m, while lanes with double-exits should be set around 80 m. ⑤The contraflow left-turn lanes with double-exits are able to control pre-signal exits as requested, which is flexible and suitable for various traffic scenarios.
-
表 1 逆流左转车道长度设置梳理
Table 1. Contraflow left-turn lane length setting
文献 推荐或使用长度/m 设置依据 [6] 70 通行能力 [7] 50 [8] 43, 50, 53 实地调查数据 [9] 60 通行能力、延误 [11] 40, 50 实地调查数据 [12] 40 排队长度、几何特征 [13] 50, 0 实地调查数据 [14] 50 [17] 43, 0, 3 实地调查数据 [18] 50 排队长度、几何特征 [20] 61~91 通行能力 [23] 40, 0 排队长度、几何特征 [24] 40, 45, 50, 55, 60 实地调查数据 [25] 40, 0 排队长度、几何特征 [26] 60 通行能力、延误 [27] 50, 0 实地调查数据 [28] 55 排队长度 [29] 50 排队长度、几何特征 [30] 40~60 [31] 60 [32] 50 排队长度、几何特征 [33] 55 实地调查数据 表 2 对比方案
Table 2. Schemes for comparison
方案编号 δ1 δ2 类型 Lilp/m Lilp1/m Lilp2/m 1 0 0 常规交叉口 2 1 0 单开口式 13 40 30 3 0 1 单开口式 4 1 1 双开口式 5 0 0 常规交叉口 6 1 0 单开口式 13 50 40 7 0 1 单开口式 8 1 1 双开口式 表 3 信号配时结果
Table 3. Signal timing result
单位: s 方案编号 流量场景 东西 南北 周期时长 左转相位
时长直行相位
时长预信号1
启亮/关闭预信号2
启亮/关闭左转相位
时长直行相位
时长预信号1
启亮/关闭预信号2
启亮/关闭低流量 29 19 29 19 96 1 中流量 过饱和 高流量 过饱和 低流量 19 19 66/6 19 19 28/44 76 2 中流量 19 19 66/6 19 19 28/44 76 高流量 过饱和 低流量 20 19 73/1 20 19 34/40 78 3 中流量 24 21 84/6 24 21 39/51 90 高流量 29 29 102/11 29 29 44/69 116 低流量 20 19 68/78 73/1 20 19 29/39 34/40 78 4 中流量 24 21 79/89 84/6 24 21 34/44 39/51 90 高流量 29 29 97/107 102/11 29 29 39/49 44/69 116 低流量 29 19 29 19 96 5 中流量 过饱和 高流量 过饱和 低流量 19 19 67/4 19 19 29/42 76 6 中流量 19 19 67/4 19 19 29/42 76 高流量 过饱和 低流量 23 19 81/2 23 19 39/44 84 7 中流量 28 23 96/7 28 23 45/58 102 高流量 过饱和 低流量 23 19 75/4 81/2 23 19 33/46 39/44 84 8 中流量 28 23 89/102 96/7 28 23 38/51 45/58 102 高流量 过饱和 表 4 仿真结果对比
Table 4. Comparison of simulation results
方案编号 流量场景 交叉口输入
流量(/ pcu/h)交叉口通过车辆数/(pcu/h) 车均延误/s 左转 直行 交叉口 左转 直行 交叉口 低流量 3 200 1 624 1 581 3 205 34.76 37.55 36.14 1 中流量 过饱和 高流量 过饱和 低流量 3 200 1 627 1 583 3 210 29.46 26.64 28.07 2 中流量 4 400 2 228 2 171 4 399 33.86 28.34 31.14 高流量 过饱和 低流量 3 200 1 617 1 583 3 201 39.16 27.82 33.56 3 中流量 4 400 2 225 2 171 4 396 46.63 34.34 40.58 高流量 5 280 2 661 2 605 5 266 56.54 42.84 49.78 低流量 3 200 1 618 1 583 3 201 31.97 27.82 29.92 4 中流量 4 400 2 224 2 171 4 395 39.74 34.33 37.08 高流量 5 280 2 662 2 605 5 267 53.39 42.83 48.18 低流量 3 200 1 624 1 581 3 205 34.76 37.55 36.14 5 中流量 过饱和 高流量 过饱和 低流量 3 200 1 627 1 583 3 210 30.24 26.64 28.47 6 中流量 4 400 2 227 2 171 4 398 36.95 28.34 32.71 高流量 过饱和 低流量 3 200 1 626 1 582 3 209 37.28 31.01 34.19 7 中流量 4 400 2 227 2 175 4 401 49.37 39.34 44.43 高流量 过饱和 低流量 3 200 1 628 1 582 3 210 31.53 31.01 31.27 8 中流量 4 400 2 219 2 175 4 394 39.32 39.34 39.33 高流量 过饱和 -
[1] 安实, 宋浪, 王健, 等. 借用公交专用道左转的主预信号控制方案优化[J]. 中国公路学报, 2020, 33(4): 115-125. doi: 10.3969/j.issn.1001-7372.2020.04.012AN S, SONG L, WANG J, et al. Main and pre-signal control scheme optimization of turning left by using bus lanes[J]. China Journal of Highway and Transport, 2020, 33(4): 115-125. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.04.012 [2] SHAHDAH U E, AZAM A. Safety and mobility effects of installing speed-humps within unconventional median U-turn intersections[J]. Ain Shams Engineering Journal, 2021(12): 1451-1462. [3] AHMED I, WARCHOL S, CUNNINGHAM C, et al. Mobility assessment of pedestrian and bicycle treatments at complex continuous flow intersections[J]. Journal of Transportation Engineering Part A: Systems, 2021, 147(5): 04021017. doi: 10.1061/JTEPBS.0000512 [4] BIE Y M, CHENG S W, LIU Z Y. Optimization of signal-timing parameters for the intersection with hook turns[J]. Transport, 2017, 32(2): 233-241. doi: 10.3846/16484142.2017.1285813 [5] PARSONS G F. The parallel flow intersection: A new two-phase signal alternative[J]. ITE Journal, 2007, 77(10): 28-32+37. [6] ZHAO J, MA W J, ZHANG H M, et al. Increasing the capacity of signalized intersections with dynamic use of exit lanes for left-turn traffic[J]. Transportation Research Record, 2013, 2355(1): 49-59. doi: 10.3141/2355-06 [7] ZHAO J, YUN M P, ZHANG H M, et al. Driving simulator evaluation of drivers' response to intersections with dynamic use of exit-lanes for left-turn[J]. Accident Analysis & Prevention, 2015(81): 107-119. [8] WU J M, LIU P, QIN X, et al. Developing an actuated signal control strategy to improve the operations of contraflow left-turn lane design at signalized intersections[J]. Transportation Research Part C: Emerging Technologies, 2019(104): 53-65. [9] LIU S, WANG Z G, JIANG Hai. Signal timing optimisation with the contraflow left-turn lane design using the cell transmission model[J/OL]. (2021-05-20)[2021-06-08]. https://doi.org/10.1080/23249935.2021.1936280 [10] XIE S Y, JIANG H. Increasing the capacity of signalized intersections by allocating exit lanes to turning movements[J]. Journal of Advanced Transportation, 2016, 50 (8) : 2239-2265. doi: 10.1002/atr.1457 [11] 陈永胜, 张小涛. 基于NSGA-Ⅱ-DE的借道左转车道信号配时优化[J]. 现代交通技术, 2020, 17(5): 66-71. doi: 10.3969/j.issn.1672-9889.2020.05.014CHEN Y S, ZHANG X T. Signal control optimization of displaced left-turn lane based on NSGA-Ⅱ-DE[J]. Modern Transportation Technology, 2020, 17(5): 66-71. (in Chinese) doi: 10.3969/j.issn.1672-9889.2020.05.014 [12] 任其亮, 谭礼平. 逆向可变车道交叉口信号配时优化方法[J]. 交通运输系统工程与信息, 2020, 20(4): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004010.htmREN Q L, TAN L P. Signal timing optimization method for reverse variable lane intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 63-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004010.htm [13] 赵靖, 陈凯佳, 周溪召. 出口道左转交叉口信号控制鲁棒优化方法[J]. 中国公路学报, 2020, 33(7): 145-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007015.htmZHAO J, CHEN K J, ZHOU X Z. Robust optimization of exit-lanes for left-turn intersections[J]. China Journal of Highway and Transport, 2020, 33(7): 145-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007015.htm [14] 慈玉生, 荣彧, 吴丽娜. 基于感应控制的交叉口逆向可变车道仿真研究[J]. 交通运输系统工程与信息, 2018, 18 (增刊1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT2018S1011.htmCI Y S, RONG Y, WU L N. Traffic simulation research of reverse variable lane at intersection based on actuated signal control[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(S1): 66-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT2018S1011.htm [15] CHEN X, JIA Y Q. Sustainable traffic management and control system for arterial with contraflow left-turn lanes[J]. Journal of Cleaner Production, 2021(280): 124256. [16] 陈松, 李显生, 王运豪, 等. 借对向出口车道左转交叉口交通控制方案优化[J]. 哈尔滨工业大学学报, 2018, 50(3): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803010.htmCHEN S, LI X S, WANG Y H, et al. Traffic control plan optimization for the intersection with contraflow left-turn lane[J]. Journal of Harbin Institute of Technology, 2018, 50 (3): 74-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803010.htm [17] WU J M, LIU P, TIAN Z Z, et al. Operational analysis of the contraflow left-turn lane design at signalized intersections in China[J]. Transportation Research Part C: Emerging Technologies, 2016(69): 228-241. [18] 梁培佳. 十字交叉口设置逆向可变车道后信号配时设计与仿真研究[D]. 北京: 北京交通大学, 2017.LIANG P J. Research on signal timing design and simulation of the intersection of reverse variable lane[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese) [19] 胡尚尚, 王晓青, 魏福禄, 等. 信号交叉口逆向可变车道交通效益分析[J]. 北方建筑, 2020, 5(5): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJZ202005006.htmHU S S, WANG X Q, WEI F H, et al. Traffic benefit analysis of reverse variable lanes at signalized intersection[J]. Northern Architecture, 2020, 5(5): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJZ202005006.htm [20] ZHAO Y, JAMES R M, XIAO L, et al. A capacity estimation model for a contraflow left-turn pocket lane at signalized intersections[J]. Transportation Research Record, 2018, 2672(17): 22-34. doi: 10.1177/0361198118787978 [21] 安实, 宋浪, 王健, 等. 非常规交叉口设计研究现状与展望[J]. 交通运输工程学报, 2020, 20(4): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004005.htmAN S, SONG L, WANG J, et al. Research status and prospect of unconventional arterial intersection design[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 1-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004005.htm [22] WU J M, LIU P, ZHOU Y, et al. Stationary condition based performance analysis of the contraflow left-turn lane design considering the influence of the upstream intersection[J]. Transportation Research Part C: Emerging Technologies, 2021(122): 102919. [23] 田云强, 商振华. 城市道路交叉口出口道可变车道设置研究[J]. 城市交通, 2014, 12(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201401015.htmTIAN Y Q, SHANG Z H. Design of reversible exit lanes at urban at-grade intersections[J]. Urban Transport of China, 2014, 12(1): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201401015.htm [24] ZHAO J, LIU Y. Safety evaluation of intersections with dynamic use of exit-lanes for left-turn using field data[J]. Accident Analysis & Prevention, 2017(102): 31-40. [25] 崔凯. 左转逆向可变车道的优化设计与控制策略[D]. 济南: 山东大学, 2017.CUI K. Optimal design and control strategy of left-turn reverse variable lane[D]. Jinan: Shandong University, 2017. (in Chinese) [26] CHEN Q, YI J X, WU Y L. Cellular automaton simulation of vehicles in the contraflow left-turn lane at signalized intersections[J]. IET Intelligent Transport Systems, 2019, 13(7): 1164-1172. [27] ZHAO J, YU J, ZHOU X Z. Saturation flow models of exit lanes for left-turn intersections[J]. Journal of Transportation Engineering, Part A: Systems, 2019, 145(3): 04018090. [28] 孙彪. T型交叉口借道左转设置研究[J]. 山东交通科技, 2020(4): 116-119+125. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE202004036.htmSUN B. Research on setting contraflow left-turn lane at T-shaped intersection[J]. Shandong Jiaotong Keji, 2020: 116-119+125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE202004036.htm [29] 童蔚苹, 杨丽, 刘菲菲, 等. 考虑行人和非机动车的借道左转车道设置方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(3): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202103001.htmTONG W P, YANG L, LIU F F, et al. Study on the method of setting contraflow left-turn lane considering pedestrian and non-motor vehicle[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2021, 45(3): 397-402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202103001.htm [30] 纪祥龙, 许佳佳, 凤鹏飞, 等. 考虑借助逆向车道设置可变车道的多时空优化设计[J]. 江苏理工学院学报, 2021, 27 (2): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CZJF202102006.htmJI X L, XU J J, FENG P F, et al. Consider multi-temporal and spatial optimal design of setting variable lanes using opposite lanes[J]. Journal of Jiangsu Teachers University of Technology, 2021, 27(2): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CZJF202102006.htm [31] 杨晓芳, 王影. 动态出口左转车道控制优化研究[J]. 交通信息与安全, 2021, 39(5): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202105014.htmYANG X F, WANG Y. Optimization control of dynamic use of exit-lanes for left-turn traffic[J]. Journal of Transport Information and Safety, 2021, 39(5): 85-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202105014.htm [32] 朱从坤, 张乐峰. 信控交叉口逆向左转可变车道适应交通量研究[J]. 交通工程, 2021, 21(2): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA202102014.htmZHU C K, ZHANG L F. Research on traffic control of signalized intersection reversing left turning variable lane[J]. Traffic Engineering, 2021, 21(2): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA202102014.htm [33] 张泰文, 张存保, 周斌, 等. 逆向可变车道动态切换及信号控制优化方法[J]. 交通信息与安全, 2020, 38(5): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202005010.htmZHANG T W, ZHANG C B, ZHOU B, et al. A method of dynamic switch control and signal timing optimization for reverse variable lane[J]. Journal of Transport Information and Safety, 2020, 38(5): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202005010.htm [34] 刘畅, 魏丽英. 考虑人均延误和人均排放的信号配时优化模型[J]. 哈尔滨工业大学学报, 2018, 50(9): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201809013.htmLIU C, WEI L Y. Signal timing optimization model considering per capita delay and per capita emissions[J]. Journal of Harbin Institute of Technolog, 2018, 50(9): 83-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201809013.htm