留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑过街行人运动轨迹不确定性的人-车碰撞概率预测方法

韩勇 谈笑天 潘迪 金钱钱 李永强 吴贺

韩勇, 谈笑天, 潘迪, 金钱钱, 李永强, 吴贺. 考虑过街行人运动轨迹不确定性的人-车碰撞概率预测方法[J]. 交通信息与安全, 2023, 41(3): 30-40. doi: 10.3963/j.jssn.1674-4861.2023.03.004
引用本文: 韩勇, 谈笑天, 潘迪, 金钱钱, 李永强, 吴贺. 考虑过街行人运动轨迹不确定性的人-车碰撞概率预测方法[J]. 交通信息与安全, 2023, 41(3): 30-40. doi: 10.3963/j.jssn.1674-4861.2023.03.004
HAN Yong, TAN Xiaotian, PAN Di, JIN Qianqian, LI Yongqiang, WU He. A Method for Predicting the Collision Probability between Crossing-street Pedestrians and Vehicles Considering the Uncertainty of Pedestrians' Movement Trajectories[J]. Journal of Transport Information and Safety, 2023, 41(3): 30-40. doi: 10.3963/j.jssn.1674-4861.2023.03.004
Citation: HAN Yong, TAN Xiaotian, PAN Di, JIN Qianqian, LI Yongqiang, WU He. A Method for Predicting the Collision Probability between Crossing-street Pedestrians and Vehicles Considering the Uncertainty of Pedestrians' Movement Trajectories[J]. Journal of Transport Information and Safety, 2023, 41(3): 30-40. doi: 10.3963/j.jssn.1674-4861.2023.03.004

考虑过街行人运动轨迹不确定性的人-车碰撞概率预测方法

doi: 10.3963/j.jssn.1674-4861.2023.03.004
基金项目: 

国家自然科学基金项目 51775466

厦门市自然科学基金面上项目 3502Z20227223

福建省工信厅项目 2022G043

详细信息
    通讯作者:

    韩勇(1984—),博士,教授. 研究方向:汽车安全. E-mail:yonghan@xmut.edu.cn

  • 中图分类号: U471.1

A Method for Predicting the Collision Probability between Crossing-street Pedestrians and Vehicles Considering the Uncertainty of Pedestrians' Movement Trajectories

  • 摘要: 为了准确预测人-车冲突中的碰撞风险,研究了利用碰撞概率评估人-车碰撞风险的预测方法。基于车辆运动特征建立车辆运动学模型,通过采集行人实际过街运动轨迹并提取不确定性特征,采用一阶马尔科夫模型和高斯白噪声建立行人随机运动模型,在此基础上构建人-车冲突距离模型;运用蒙特卡洛抽样,提取行人过街过程中的人-车最短距离和碰撞时间(time to collision,TTC)分布特征,通过拟合这些特征来估算最短距离和TTC的概率密度函数,建立人-车碰撞概率预测模型;结合2起人-车深度事故案例和3种不同制动特性的自动紧急制动(automatic emergency braking,AEB)系统,对比验证人-车碰撞概率预测模型的有效性。结果显示:建立的行人随机运动模型,其模拟的行人运动速度的均值和标准差与实际值的绝对误差在2%以内,模型精度较高;在事故案例仿真中,车辆与行人在发生碰撞时刻对应的碰撞概率为100%;在车辆加装AEB的仿真中,激进型AEB,法规型AEB以及保守型AEB在触发时刻对应的碰撞概率分别为超过了80%,在30%~40%之间,以及不足5%,这表明人-车碰撞概率预测模型可有效预测2起真实案例中行人和车辆在不同时刻的碰撞风险,且与使用固定触发阈值的AEB相比,建立的人-车碰撞概率预测模型能够更加准确直观地反应人-车碰撞风险。

     

  • 图  1  碰撞概率预测流程

    Figure  1.  Process of collision probability prediction

    图  2  行人过街场景

    Figure  2.  Scenario of pedestrians crossing the road

    图  3  车辆运动学模型

    Figure  3.  Vehicle kinematics model

    图  4  行人过街轨迹对比

    Figure  4.  Comparison of pedestrians'crossing trajectories

    图  5  行人速度分布对比

    Figure  5.  Comparison of pedestrians'velocity distribution

    图  6  初始仿真状态$d_{\min }$和$t_{\overline{\underline{\mathrm{TTC}}}}$分布(案例1)

    Figure  6.  Distribution of $d_{\min }$ and $t_{\overline{\underline{\mathrm{TTC}}}}$ at the initial simulation moment (Case 1)

    图  7  车辆制动过程

    Figure  7.  Process of the vehicle brake

    图  8  行人过街瞬间(案例1)

    Figure  8.  Crossing moment of the pedestrian(Case 1)

    图  9  人-车碰撞概率曲线(案例1)

    Figure  9.  Curve of pedestrian-vehicle collision probability(Case 1)

    图  10  碰撞概率与人-车相对距离及车速关系曲线(案例1)

    Figure  10.  Curve of relationship between collision probability and relative pedestrian-vehicle distance and vehicle velocity(Case 1)

    图  11  行人过街瞬间(案例2)

    Figure  11.  Crossing moment of the pedestrian(Case 2)

    图  12  人-车碰撞概率曲线(案例2)

    Figure  12.  Curve of pedestrian-vehicle collision probability(Case 2)

    图  13  碰撞概率与人-车相对距离及车速关系曲线(案例2)

    Figure  13.  Curve of relationship between collision probability and relative pedestrian-vehicle distance and vehicle velocity(Case 2)

    表  1  3种不同制动类型AEB参数设置[26-29]

    Table  1.   Parameter setting for 3 different brake types of AEB

    参数 激进型 法规型 保守型
    amax/g 0.9 0.9 0.5
    ttrigger/s 0.8 1.1 1.4
    θFOV/(°) 50/75 75 90
    探测距离/m 60 60 60
    制动器延迟时间/s 0.1 0.1 0.1
    下载: 导出CSV
  • [1] World Health Organization. Global status report on road safety[R]. Geneva: World Health Organization, 2018.
    [2] 李彩霞, 卢少波, 张博涵, 等. 基于行人位置预测的人车转向避撞路径规划[J]. 汽车工程, 2021, 43(6): 877-884. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202106011.htm

    LI C X, LU S B, ZHANG B H, et al. Human-vehicle steering collision avoidance path planning based on pedestrian location prediction[J]. Automotive Engineering, 2021, 43(6): 877-884. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202106011.htm
    [3] 杨旭, 周竹萍, 刘博闻. 基于突变理论的人车碰撞风险实时预警模型[J]. 南京理工大学学报(自然科学版), 2021, 45 (5): 606-613.

    YANG X, ZHOU Z P, LIU B W. Real-time early warning model of collision risk between human and vehicle based on catastrophe theory[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2021, 45(5): 606-613. (in Chinese)
    [4] 褚昭明, 陈瑞祥, 刘金广. 城市道路无信号控制路段行人过街风险分级预警模型[J]. 交通信息与安全, 2023, 41(1): 53-61. doi: 10.3963/j.jssn.1674-4861.2023.01.006

    CHU Z M, CHEN R X, LIU J G. A model of risk classification and forewarning for pedestrian crossing behavior at unsignalized urban roadways[J]. Journal of Transport Information and Safety, 2023, 41(1): 53-61. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.006
    [5] 杨琦, 卢杨, 汪利利, 等. 信号交叉口行人过街形式适用性分析[J]. 中国公路学报, 2014, 27(10): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410014.htm

    YANG Q, LU Y, WANG L L, et al. Analysis of applicability of pedestrian crossing form in signalized intersection[J]. China Journal of Highway and Transport, 2014, 27(10): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410014.htm
    [6] 黄慧玲. 基于前方车辆行为分析的安全预警方法研究[D]. 上海: 上海交通大学, 2016.

    HUANG H L. Research on security early warning method based on behavior analysis of the front vehicles[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
    [7] 袁佳威. 城市工况下避撞行人的主动制动策略研究[D]. 长春: 吉林大学, 2020.

    YUAN J W. Research on active braking strategy of pedestrians collision avoidance in urban conditions[D]. Changchun: Jilin University, 2020. (in Chinese)
    [8] 杨为, 赵胡屹, 舒红. 自动紧急制动系统行人避撞策略及仿真验证[J]. 重庆大学学报, 2019, 42(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201902001.htm

    YANG W, ZHAO H Y, SHU H. Simulation and verification of the control strategies for AEB pedestrian collision avoidance system[J]. Journal of Chongqing University, 2019, 42(2): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201902001.htm
    [9] KIM J, JO K, LIM W, et al. Curvilinear-coordinate-based object and situation assessment for highly automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1559-1575.
    [10] LAUGIER C, PAROMTCHIK I E, PERROLLAZ M, et al. Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety[J]. IEEE Intelligent Transportation Systems Magazine, 2011, 3(4): 4-19.
    [11] AOUDE G S, LUDERS B D, LEE K K H, et al. Threat assessment design for driver assistance system at intersections[C]. 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal: IEEE, 2010.
    [12] HAN Y, LI Q, QIAN Y, et al. Comparison of the landing kinematics of pedestrians and cyclists during ground impact determined from vehicle collision video records[J]. International Journal of Vehicle Safety, 2018, 10(3-4): 212-234.
    [13] 韩勇, 林丽雅, 何勇, 等. 电动两轮车骑车人紧急避让姿态对损伤风险的影响研究[J]. 汽车工程, 2022, 44(5): 764-770. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202205017.htm

    HAN Y, LIN L Y, HE Y, et al. Research on the effects of emergent avoidance postures of electric two-wheeler riders on their injury risk[J]. Automotive Engineering, 2022, 44 (5): 764-770. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202205017.htm
    [14] 韩勇, 李永强, 许永虹, 等. 基于VRUs深度事故重建的AEB效能对头部损伤风险的影响[J]. 汽车安全与节能学报, 2021, 12(4): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202104007.htm

    HAN Y, LI Y Q, XU Y H, et al. Effectiveness of AEB system for head injury risk based on VRUs in-depth accident reconstruction[J]. Journal of Automotive Safety and Energy, 2021, 12(4): 490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202104007.htm
    [15] WU H, HAN Y, WANG B Y, et al. The difference in the kinematic and injury risk of cyclists between normal and emergency avoidance postures in vehicle collisions[J]. International Journal of Crashworthiness, 2022, 28(1): 82-95.
    [16] 刘象祎. 行人机动不确定下的人车碰撞概率预测[D]. 长沙: 湖南大学, 2017.

    LIU X Y. Probabilistic risk assessment for pedestrian-vehicle collision considering uncertainties of pedestrian mobility[D]. Changsha: Hunan University, 2017. (in Chinese)
    [17] FENG J, WANG C, XU C, et al. Active collision avoidance strategy considering motion uncertainty of the pedestrian[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3543-3555.
    [18] 韩学源, 金先龙, 张晓云, 等. 基于视频图像与直接线性变换理论的车辆运动信息重构[J]. 汽车工程, 2012, 34(12): 1145-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201212019.htm

    HAN X Y, JIN X L, ZHANG X Y, et al. Vehicle movement information reconstruction based on video images and dlt theory[J]. Automotive Engineering, 2012, 34 (12) : 1145-1149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201212019.htm
    [19] BERTHELOT A, TAMKE A, DANG T, et al. A novel approach for the probabilistic computation of time-to-collision[C]. 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain: IEEE, 2012.
    [20] BERTHELOT A, TAMKE A, DANG T, et al. Handling uncertainties in criticality assessment[C]. 2011 IEEE Intelligent Vehicles Symposium(IV), Baden-Baden, Germany: IEEE, 2011
    [21] HUANG Z, LIU X, SONG X, et al. Probabilistic risk assessment for pedestrian-vehicle collision considering uncertainties of pedestrian mobility[J]. Traffic Injury Prevention, 2017, 18(6): 650-656.
    [22] 韩勇, 徐甲芍, 石亮亮, 等. 电动二轮车驾驶人头部损伤再现不确定性方法[J]. 中国公路学报, 2020, 33(1): 172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001018.htm

    HAN Y, XU J S, SHI L L, et al. Uncertainty analysis of head injury via reconstruction of electric two-wheeler accidents[J]. China Journal of Highway and Transport, 2020, 33 (1): 172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001018.htm
    [23] JEPPSSON H, LUBBE N. Simulating automated emergency braking with and without torricelli vacuum emergency braking for cyclists: effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities[J]. Accident Analysis & Prevention, 2020(142): 105538.
    [24] PAN D, HAN Y, JIN Q, et al. Probabilistic prediction of collisions between cyclists and vehicles based on uncertainty of cyclists' movements[J]. Transportation Research Record, 2022, 2677(3): 1151-1164.
    [25] TANAKA S, TERAOKA E Y M. Benefit estimation of active safety systems for crossing-pedestrian scenarios[C]. FISITA World Automotive Congress, Maastricht, The Netherlands: FISITA, 2014.
    [26] HAUS S H, SHERONY R, GABLER H C. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States[J]. Traffic Injury Prevention, 2019, 20(s1): S171-S176.
    [27] HAMDANE H, SERRE T, MASSON C, et al. Issues and challenges for pedestrian active safety systems based on real world accidents[J]. Accident Analysis & Prevention, 2015(82): 53-60.
    [28] 苏占领, 牛成勇, 徐建勋, 等. 基于行人横穿场景的AEB系统性能测试与评价研究[J]. 辽宁工业大学学报(自然科学版), 2022, 42(4): 218-222. https://www.cnki.com.cn/Article/CJFDTOTAL-LNGX202204002.htm

    SU Z L, NIU C Y, XU J X, et al. Research on performance test and evaluation of AEB system based on pedestrian crossing scene[J]. Journal of Liaoning University of Technology (Natural Science), 2022, 42(4): 218-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LNGX202204002.htm
    [29] 曹毅, 周华, 肖凌云, 等. 基于NAIS数据库中视频信息的人—车碰撞事故特征分析[J]. 汽车安全与节能学报, 2020, 11(1): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202001004.htm

    CAO Y, ZHOU H, XIAO L Y, et al. Analysis of pedestrian-vehicle collision accident characteristics based on the video information from NAIS database[J]. Journal of Automotive Safety and Energy, 2020, 11(1): 44-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202001004.htm
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  369
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 网络出版日期:  2023-09-16

目录

    /

    返回文章
    返回