留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航拍视频车辆检测目标关联与时空轨迹匹配

冯汝怡 李志斌 吴启范 范昌彦

冯汝怡, 李志斌, 吴启范, 范昌彦. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008
引用本文: 冯汝怡, 李志斌, 吴启范, 范昌彦. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008
FENG Ruyi, LI Zhibin, WU Qifan, FAN Changyan. Association of Vehicle Object Detection and the Time-space Trajectory Matching from Aerial Videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008
Citation: FENG Ruyi, LI Zhibin, WU Qifan, FAN Changyan. Association of Vehicle Object Detection and the Time-space Trajectory Matching from Aerial Videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008

航拍视频车辆检测目标关联与时空轨迹匹配

doi: 10.3963/j.jssn.1674-4861.2021.02.008
基金项目: 

国家自然科学基金项目 71871057

详细信息
    作者简介:

    冯汝怡(1999—),博士研究生.研究方向:智能交通.E-mail: fengruyi@seu.edu.cn

    通讯作者:

    李志斌(1983—),博士,教授.研究方向:智能交通.E-mail: lizhibin@seu.edu.cn

  • 中图分类号: U491.4

Association of Vehicle Object Detection and the Time-space Trajectory Matching from Aerial Videos

  • 摘要: 高解析度轨迹数据蕴含丰富车辆行驶与交通流时空信息。为从航拍视频中提取车辆轨迹,构建了车辆检测目标跨帧关联与轨迹匹配融合方法。采用卷积神经网络YOLOv5构建视频全域车辆目标检测,提出车辆动力学与轨迹置信度约束下跨帧目标关联算法,建立了基于最大相关性的断续轨迹匹配与融合构建算法,实现轨迹车辆唯一编号。将轨迹从图像坐标转换为车道基准下Frenet坐标,构建集合经验模态分解(EEMD)模型进行轨迹数据噪声消除。采用南京市快速路无人机拍摄的2组开源航拍视频,涵盖拥堵与自由流交通状态,对轨迹提取算法进行效果测试。结果表明,在自由流和拥挤条件下轨迹准确率分别为98.86%和98.83%,轨迹召回率为93.00%和86.69%,构建算法的轨迹提取速度为0.07 s/辆/m。该方法处理得到的详细车辆时空轨迹信息能为交通流、交通安全、交通管控研究提供广泛的数据支撑,数据公开于http://seutraffic.com/

     

  • 图  1  典型车辆时空轨迹图

    Figure  1.  Typical vehicle time-space trajectory map

    图  2  轨迹构建算法框架图

    Figure  2.  Framework of the proposed algorithm

    图  3  轨迹关联示意图

    Figure  3.  Illustration for trajectory correlation

    图  4  坐标转换示意图

    Figure  4.  Illustration of coordinate transform

    图  5  假阳性检测结果的可能原因

    Figure  5.  Possible cause for false positive detection

    图  6  车辆轨迹降噪结果

    Figure  6.  Results for trajectory denoising

    图  7  关键交通参数与NGSIM数据对比

    Figure  7.  Comparison of key traffic parameters with NGSIM

    图  8  视频1车辆轨迹时空图

    Figure  8.  Time-space vehicle trajectory for video 1

    图  9  视频2车辆轨迹时空图

    Figure  9.  Time-space vehicle trajectory for video 2

    表  1  轨迹构建结果

    Table  1.   Results of trajectory construction

    变量 测试视频1 测试视频2
    轨迹数量真值(GT) 500 541
    真阳数(TP) 465 469
    假阴数(TN 35 72
    假阳数(FP) 4 43
    召回率(Recall)/% 93.00 86.69
    准确率(Precision)/% 99.15 91.6
    下载: 导出CSV
  • [1] 赵秀江. 基于视频图像处理技术的行车轨迹线采集及其分析研究[D]. 长沙: 湖南大学, 2012.

    ZHAO Xiujiang. Collection and analysis research of travel trajectory line based on image processing technology[D]. Changsha: Hunan University, 2012. (in Chinese)
    [2] 刘晨强. 车辆轨迹数据与换道行为特性研究[D]. 北京: 北京工业大学, 2018.

    LIU Chenqiang. Research of vehicle trajectory data and lane change characteristics[D]. Beijing: Beijing University of Technology, 2018. in Chinese
    [3] Federal Highwavy Administration. Next generation simulation (NGSIM) vehicle trajectories and supporting data[EB/OL]. (2006-12-1)[2021-03-11]. https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/ 8ect-6jqj.
    [4] MONTANINO M, PUNZO V. Making NGSIM data usable for studies on traffic flow theory: multistep method for vehicle trajectory reconstruction[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013(2390): 99-111. http://www.researchgate.net/profile/Marcello_Montanino/publication/269853999_Making_NGSIM_Data_Usable_for_Studies_on_Traffic_Flow_Theory/links/54abda5a0cf25c4c472fb1bb.pdf
    [5] 石建军, 刘晨强. NGSIM车辆轨迹重构[J]. 北京工业大学学报, 2019, 45(6): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201906010.htm

    SHI Jianjun, LIU Chenqiang. Trajectory reconstruction of vehicles in NGSIM[J]. Journal of Beijing University of Technology, 2019, 45(6): 601-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201906010.htm
    [6] PUNZO V, BORZACCHIELLO M T, CIUO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation Simulation(NGSIM)program data[J]. Transportation Research Part C: Emerging Technologies, 2011(19), 1243-1262.
    [7] 姬红利. 基于航拍视频的多目标检测和跟踪[D]. 天津: 天津大学, 2014.

    JI Hongli. Multiple target detection and tracking based on aerial videos[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [8] EMMANOUIL N B, ELENI I V, JOHN C G. Unmanned aerial aircraft systems for transportation engineering: Current practice and future challenges[J]. International Journal of Transportation Science and Technology, 2016, 5(3): 111-122. doi: 10.1016/j.ijtst.2017.02.001
    [9] 成名, 金立左. 基于视觉显著性的航拍车辆检测[J]. 工业控制计算机, 2016(4): 75-77. doi: 10.3969/j.issn.1001-182X.2016.04.035

    CHENG Ming, JIN Lizuo. Aerial vehicle detection based on visual significance[J]. Industrial Control Computer, 2016(4): 75-77. (in Chinese) doi: 10.3969/j.issn.1001-182X.2016.04.035
    [10] 毛征, 刘松松, 张辉等. 不同光照和姿态下的航拍车辆检测方法[J]. 北京工业大学学报, 2016, 42(7): 982-988. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201607004.htm

    MAO Zheng, LIU Songsong, ZHANG Hui. Vehicle detection from aerial photographing under different illumination and pose[J]. Journal of Beijing University of Technology, 2016, 42 (7): 982-988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201607004.htm
    [11] XIAO Jiangjian, YANG Changjiang, HAN Feng, et al. Vehicle and person tracking in aerial videos[C]. Multimodal Technologies for Perception of Humans, Baltimore, USA: SpringerVerlag, 2007.
    [12] SALEEMI I, SHAH M. Multiframe many–many point correspondence for vehicle tracking in high density wide area aerial videos[J]. International Journal of Computer Vision, 2013 (104): 198-219. doi: 10.1007/s11263-013-0624-1
    [13] AZEVEDO C L, CARDOSO J L, BEN-AKIVA M, et al. Automatic vehicle trajectory extraction by aerial remote sensing[J]. ProcediaSocial and Behavioral Sciences, 2014(111): 849-858. http://www.sciencedirect.com/science/article/pii/S1877042814001207
    [14] CAO Xianbin, WU Changxia, LAN Jinhe, et al. Vehicle detection and motion analysis in low-altitude airborne video under urban environment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(10): 1522-1533. doi: 10.1109/TCSVT.2011.2162274
    [15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Computer Vision & Pattern Recognition, Las Vegas, USA: IEEE, 2016.
    [16] FAN Q, BROWN L, SMITH J. A closer look at faster R-CNN for vehicle detection[C]. IEEE Intelligent Vehicles Symposium(IV), Gotenburg, Sweden: ITSS, 2016.
    [17] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955(1/2): 83-97. http://bib.oxfordjournals.org/external-ref?access_num=10.1002/nav.3800020109&link_type=DOI
    [18] MAO Tianlu, WANG Hua, DENG Zhigang, et al. An efficientlane model for complex traffic simulation[J]. Computer Animation & Virtual Worlds, 2015, 26(3/4): 397-403.
    [19] WU Zhaohua, HUANG N E. Ensemble emprical mode decomposition: a noise-assisted data analysis algorithm[J]. Advances in Adaptive Data Analysis, 2009(1): 1-41.
    [20] CHEN Xinqiang, LI Zhibin, WANG Yinhai, et al. Anomaly detection and cleaning of highway elevation data from Google Earth using ensemble empirical mode decomposition[J]. Journal of Transportation Engineering, 2018, 144(5): 04018015.1-04018015.14. http://www.researchgate.net/publication/324014183_Anomaly_Detection_and_Cleaning_of_Highway_Elevation_Data_from_Google_Earth_Using_Ensemble_Empirical_Mode_Decomposition
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  518
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06

目录

    /

    返回文章
    返回