Impacts of Major Epidemic on Passengers' Dependence on Public Transport
-
摘要: 深入探究重大疫情对乘客公共交通使用行为和依赖性的影响,有助于针对性地改善公共交通服务质量和供需平衡情况。结合前景理论与计划行为理论,开展重大疫情时期SP/RP出行调查,从出行行为表现维度选取3个指标并利用k-means算法标定公共交通出行群体,从7个层面筛选公共交通依赖性内外部影响指标,采用结构方程模型构建重大疫情对乘客公共交通依赖性影响模型。结果表明,个体属性、出行环境和出行特征潜变量通过改变个体心理因素间接影响乘客公共交通依赖性,反映了乘客公共交通依赖性受主客观影响因素的共同作用;重大疫情下出行意向对公共交通依赖性的正向作用强度为0.36,低于常态化时的影响强度0.51;出行环境的正向影响效应较强,而个体属性影响效应较低且与公共交通态度和主观规范呈负相关性;此外,自行车可用性、是否途径风险区和出行强度影响度几乎不影响乘客公共交通依赖性;而防控政策了解度、主观规范变量和公共交通出行偏好的影响作用显著,反映了重大疫情时期在公共交通市场中社会促进效应与消费心理学中的模糊效应较为明显。Abstract: Exploring the impacts of major epidemics on passengers' behaviors and dependence on public transportation can improve the quality of public transportation(PT)services and the balance between supply and demand.Based on the prospect theory and the theory of planned behavior(TPB), the work proposes the SP/RP travel survey scheme in the period of a major epidemic.Three indicators are selected from the dimension of travel behaviors, and a k-means algorithm is used to identify the PT passenger categories.The internal and external impact indicators of PT dependence are screened from seven levels.Then, a structural equation model is utilized to construct the model of major-epidemic impacts on passengers' PT dependence.The results show that the latent variables of individual attributes, travel environment, and travel characteristics indirectly affect passengers' PT dependence by changing individual psychological factors, which reflects the joint effect of subjective and objective factors on passengers' PT dependence.The positive intensity of travel intention on PT dependence under a major epidemic is 0.36, which is lower than that of 0.51 under normal conditions.The positive effect of the travel environment is strong, while the effect of individual attributes is relatively low and negatively correlated with PT attitude and subjective norms.Besides, bicycle availability, route risk, and travel intensity hardly affect passengers' PT dependence.The acquaintance of prevention and control policies, subjective normative variables, and travel preference on PT have significant effects, reflecting that the social promotion effect and the fuzzy effect of consumer psychology are more obvious in the PT market in the major epidemic period.
-
Key words:
- urban traffic /
- major epidemic /
- dependence /
- k-means algorithm /
- structural equation model
-
表 1 调查问卷主要内容
Table 1. Key content of the questionnaires
一级指标 二级指标 指标描述 个体属性 小汽车可用性 1=非常不容易; 2=比较不容易; 3=一般; 4=比较容易; 5=非常容易 自行车/电动自行车可用性 是否接送孩子 1=是;0=否 年龄/岁 连续变量 职业 1=学生; 2=公务员/事业单位; 3=企事业职员; 4=工人; 5=私营及个体劳动者; 6=自由职业; 7=无业/退休; 8=其他 教育水平 1=高中及以下; 2=中专或大专; 3=大学本科; 4=研究生及以上 收入/元 1=1 500以下; 2=1 500~3 000; 3=3 001~5 000; 4=5 001~8 000; 5=8 001~15 000; 6=15 001~20 000; 7=20 000以上 出行特征 出行天数占比 平均每周使用公共交通出行的天数占总出行天数的比例;连续变量 出行次数占比 平均每周使用公共交通出行的次数占总出行次数的比例;连续变量 出行模式往返性 使用公共交通出行后,仍采用公共交通返回的出行比例;连续变量 出行距离 连续变量 出行环境 家和目的地到交通站点总时间/min 连续变量 出行起讫点位于中高风险区域 1=是;0=否 公共交通态度 安全性 使用公共交通出行时,疫情传播和事故发生等安全风险水平;1=低;2=较低;3=中;4=较高;5=高 便捷性 使用公共交通出行时,疫情防控措施减缓进站速度、前往站点距离、行驶速度等便捷性水平;1=低;2=较低;3=中;4=较高;5=高 总体满意度 使用公共交通出行时,疫情防控有效性、运送速度、人员服务水平等满意度水平;1=低;2=较低;3=中;4=较高;5=高 主观规范 亲友对使用公共交通支持程度 1=非常不支持;2=不太支持;3=比较支持;4=支持;5=非常支持 受亲友影响而使用公共交通出行 1=非常不同意;2=不太同意;3=比较同意;4=同意;5=非常同意 感知行为控制 对公共交通线路熟悉程度 1=非常不熟悉;2=不太熟悉;3=比较熟悉;4=熟悉;5=非常熟悉 对公共交通疫情防控政策了解程度 1=非常不了解;2=不太了解;3=比较了解;4=了解;5=非常了解 重大疫情对出行强度的影响 1=大幅减少;2=明显减少;3=小幅减少;4=几乎不变;5=略有增加 选择公共交通出行方便与自由程度 1=非常低;2=比较低;3=一般;4=比较高;5=非常高 出行意向 公共交通出行偏好 1=非常不喜欢;2=不太喜欢;3=比较喜欢;4=喜欢;5=非常喜欢 汽车出行偏好 骑行出行偏好 步行出行偏好 表 2 乘客公共交通依赖性评估指标
Table 2. Evaluation indicators of passengers' dependence on public transport
指标 均值/% 标准差 偏度 峰度 出行天数占比 45.41 35.13 0.27 -1.40 出行次数占比 46.63 35.02 0.11 -1.42 出行模式往返性 59.83 37.22 -0.39 -1.37 表 3 重大疫情下乘客公共交通依赖性影响变量
Table 3. Influence variables of passengers' dependence on public transport under major epidemic disease
外生潜变量 外生显变量 内生潜变量 内生显变量 个体属性 小汽车可用性(A1) 公共交通出行偏好(I1) 自行车/电动自行车可用性(A2) 出行意向 汽车出行偏好(I2) 是否接送孩子(A3) 骑行出行偏好(I3) 年龄(A4) 步行出行偏好(I4) 职业(A5) 安全性(AT1) 教育水平(A6) 公共交通态度 便捷性(AT2) 收入(A7) 总体满意度(AT3) 土地混合利用强度(S1) 对公共交通线路熟悉程度(P1) 出行环境 家和目的地到交通站点总时间(S2) 感知行为控制 对公共交通疫情防控政策了解程度(P2) 是否途经中高风险区域(S3) 重大疫情对出行强度的影响(P3) 居住地房价(S4) 选择公共交通出行方便与自由程度(P4) 出行特性 出行距离 主观规范 亲友对使用公共交通支持程度(N1) 受亲友影响而使用公共交通出行(N2) 表 4 样本最终聚类中心
Table 4. Final cluster centers of samples
% 聚类中心 依赖性水平 低(26) 较低(16) 较高(26) 高(32) 出行天数占比 9.64 16.73 46.40 87.93 出行次数占比 9.29 21.02 50.33 88.39 出行模式往返性 9.65 94.80 50.26 91.38 表 5 模型拟合优度评估指标
Table 5. Evaluation indicators of the model's goodness of fit
评价指标 IFI TLI CFI PNFI PCFI RMSEA CMIN/DF 评价标准 >0.9 >0.9 >0.9 >0.5 >0.5 >0.08 >3 模型指数 0.957 0.942 0.955 0.651 0.741 0.032 1.309 -
[1] 葛颖恩, 杨佳琳. 基于对比分析的新冠疫情对航运业的影响研究[J]. 交通信息与安全, 2020, 38(2): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002018.htmGE Yingen, YANG Jialin. Impacts of COVID-19 on shipping industry based on comparative analysis[J]. Journal of Transport In-formation and Safety, 2020, 38(2): 120-128. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002018.htm [2] 刘玢妤, 张露丹. 疫情引发多国交通生态系统变革[N]. 中国交通报, 2020-06-04(4).LIU Binyu, ZHANG Ludan. The epidemic has led to changes in transport ecosystems in many countries[N]. China Communications News, 2020-06-04(4). (in Chinese). [3] YU L, XIE B, CHAN E. Exploring impacts of the built environment on transit travel: Distance, time and mode choice, for urban villages in Shenzhen, China[J]. Transportation Research Part E: Logistics and Transportation Review, 2019(132): 57-71. http://www.sciencedirect.com/science/article/pii/S1366554519304090 [4] CERVERO R. Office development, rail transit, and commuting choices[J]. Journal of Public Transportation, 2006, 9(5): 41-55. doi: 10.5038/2375-0901.9.5.3 [5] 秦焕美, 高建强, 和士辉, 等. 基于奖罚措施的小汽车通勤者出行行为研究[J]. 交通运输系统工程与信息, 2018, 18(1): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801018.htmQIN Huanmei, GAO Jianqiang, HE Shihui, et al. Study on the travel behavior of car commuters based on reward and punishment measures[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 115-120. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801018.htm [6] 尹超英, 邵春福, 王晓全, 等. 考虑空间异质性的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 543-548. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202002018.htmYIN Chaoying, SHAO Chunfu, WANG Xiaoquan, et al. Influence of built environment on commuting mode choice considering spatial heterogeneity[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 543-548. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202002018.htm [7] 黄晓燕, 曹小曙, 殷江滨, 等. 城市轨道交通和建成环境对居民步行行为的影响[J]. 地理学报, 2020, 75(6): 1256-1271. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202006013.htmHUANG Xiaoyan, CAO Xiaoshu, YIN Jiangbin, et al. The influence of urban transit and built environment on walking[J]. Acta Geography Sinica, 2020, 75(6): 1256-1271(. in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202006013.htm [8] KRYGSMAN S, ARENTZE T, TIMMERMANS H. Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach[J]. Transportation Research Part A: Policy and Practice, 2007(41): 913-933. http://www.sciencedirect.com/science/article/pii/S0965856407000390 [9] FU X, JUAN Z. Exploring the psychosocial factors associated with public transportation usage and examining the"gendered"difference[J]. Transportation Research Part A: Policy and Practice, 2017(103): 70-82. http://www.sciencedirect.com/science/article/pii/S0965856417305037 [10] ARROYO R, RUIZ T, MARS L, et al. Influence of values, attitudes towards transport modes and companions on travel behavior[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020(71): 8-22. http://www.sciencedirect.com/science/article/pii/S1369847819305418 [11] ZANNI A M, RYLEY T J. The impact of extreme weather conditions on long distance travel behaviour[J]. Transportation Research Part A: Policy and Practice, 2015(77): 305-319. http://smartsearch.nstl.gov.cn/paper_detail.html?id=3d8a4a8112b41689a2b000ca92e1a33b [12] 林子敬. 恶劣天气对大连市居民出行方式选择的影响研究[D]. 大连: 大连理工大学, 2017.LIN Zijing. Study on the Impact of bad weather on Dalian residents'travel mode choice behavior[D]. Dalian: Dalian Univeraity of Technology, 2017. (in Chinese). [13] NGUYEN-PHUOC D Q, CURRIE G, GRUYTER C D, et al. How do public transport users adjust their travel behaviour if public transport ceases?A qualitative study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018(54): 1-14. [14] 吴娇蓉, 王宇沁, 陈小鸿. 公共卫生事件持续期通勤合乘设计及组织效率影响分析[J]. 中国公路学报, 2020, 33(11): 20-29. doi: 10.3969/j.issn.1001-7372.2020.11.004WU Jiaorong, WANG Yuqin, CHEN Xiaohong. Impact analysis of commuting rideshare design and organizational efficiency during public health emergencies[J]. China Journal of Highway and Transport, 2020, 33(11): 20-29. (in Chinese). doi: 10.3969/j.issn.1001-7372.2020.11.004 [15] 刘建荣, 郝小妮, 石文瀚. 新冠疫情对老年人公交出行行为的影响[J]. 交通运输系统工程与信息, 2020, 20(6): 71-76+98. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202006009.htmLIU Jianrong, HAO Xiaoni, SHI Wenhan. Impact of COVID-19 on the elderly's bus travel behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 71-76+98. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202006009.htm [16] CULLINANE S, CULLINANE K. Car dependence in a public transport dominated city: Evidences from Hong Kong[J]. Transportation Research Part D: Transport and Environment, 2003, 8(2): 129-138. doi: 10.1016/S1361-9209(02)00037-8 [17] 王光荣. 城市居民出行的小汽车依赖的治理[J]. 兰州学刊, 2010(5): 80-82. doi: 10.3969/j.issn.1005-3492.2010.05.021WANG Guangrong. City dwellers travel by car depending on governance[J]. Lanzhou Academic Journal, 2010(5): 80-82. (in Chinese). doi: 10.3969/j.issn.1005-3492.2010.05.021 [18] CHAKRABARTI S, SHIN E J. Automobile dependence and physical inactivity: Insights from the California household travel survey[J]. Journal of Transport & Health, 2017(6): 262-271. [19] 王丰龙, 王冬根. 北京市居民汽车使用的特征及其影响因素[J]. 地理学报, 2014, 69(6): 771-781. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201406005.htmWANG Fenglong, WANG Donggen. Characteristics and determinants of car use in Beijing[J]. Acta Geographica Sinica, 2014, 69(6): 771-781. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201406005.htm [20] GOLOB T F. Structural equation modeling for travel behavior research[J]. Transportation Research Part B: Methodological, 2003, 37(1): 1-25. http://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Fwww.escholarship.org%2Fuc%2Fitem%2F2pn5j58n.pdf%3Borigin%3Drepeccitec;h=repec:cdl:uctcwp:qt2pn5j58n