Multi-Objective Optimization for Coordinated Control of Double-cycling Arterial Signals Considering Dynamic Vehicle Speeds
-
摘要: 干线协调控制通常以干线方向通行效率最大为目标,导致一些小型交叉口次路方向延误较大。针对该问题,基于车路协同环境,研究了车速引导下的双周期干线多目标优化方法。针对上游交叉口饱和交通流与非饱和交通流2种情况,提出了考虑排队消散和相位差的动态车速引导模型。以干线延误、通行能力、停车次数,双周期交叉口次路方向延误为优化目标,构建了车速引导下的双周期干线多目标优化模型,采用遗传算法对模型进行求解。基于COM接口,采用Python和Vissim搭建车路协同仿真环境,以北京市两广路的3个路口为例进行仿真验证。对比了本文模型与原配时方案、无车速引导下双周期干线多目标优化模型的效果,结果表明,本文模型相比于原配时方案和无车速引导下多目标优化模型,干线平均延误分别减少19.6%,8.3%,通行能力分别提升5.6%,8.4%,平均停车次数分别减少11.2%,24.2%,双周期交叉口次路方向平均延误分别减少33.9%,5.8%,表明本文模型将速度引导与多目标优化相结合,提高了双周期干线的通行效率,降低了双周期交叉口次路方向的延误,达到了干线和双周期交叉口共同优化的目的。Abstract: Arterial coordination control usually aims at maximizing the traffic efficiency in the main direction, which leads to a large delay in the cross street of some minor intersections.Based on the cooperative vehicle infrastructure, the work studies the multi-objective optimization method of double-cycling arterials under speed guidance.Aiming at the saturated and unsaturated traffic flow at the upstream intersection, a dynamic speed guidance model considering queue dissipation and offset is proposed.Furthermore, a double-cycling arterials multi-objective optimization model is constructed taking the average delay time, the average number of stops, the capacity of arterials, and the average delay of the double-cycling intersection as the comprehensive optimization objectives.Then, the genetic algorithm is used to solve the model to obtain the optimized coordinated signal-timing scheme.Based on the COM interface, the cooperative vehicle infrastructure environment is built using Python and Vissim software, and the model is simulated by taking three intersections of Guanganmen Inner Street in Beijing as a case study.The results of this model are compared with those of the original scheme and the multi-objective optimization model of the double-cycling artery without speed guidance.Compared with the original scheme and the multi-objective optimization model without speed guidance, the average delay of arterial is reduced by 19.6% and 8.3%; the capacity increased by 5.6% and 8.4%; the average number of stops is reduced by 11.2% and 24.2%; the average delay of the cross street of the double-cycling intersection re-duced by 33.9% and 5.8%, respectively.The results show that this model combines speed guidance with multi-objective optimization to achieve dynamic speed guidance, with the increased traffic efficiency of the double-cycling artery, the reduced delay of a cross street at a double-cycling intersection, and the mutual optimization of the artery and double-cycling intersection.
-
表 1 交叉口现状信号配时方案及平峰流量数据
Table 1. Original signal timing schemes and off-peak time volume of intersections
交叉口 相位 绿灯时间/s 黄灯时间/s 全红时间/s 周期/s 流量/pcu 东(南)进口 西(北)进口 1牛街 东西直行 89 4 2 218 814 686 东西左转 31 4 2 87 90 南北直行 43 4 2 445 432 南北左转 31 4 2 156 103 2教子
胡同东西直行 100 4 2 218 816 766 东西左转 37 4 2 203 112 南北直左 63 4 2 340 308 3菜市口 东西直行 85 4 2 218 712 807 东西左转 33 4 2 235 124 南北直行 45 4 2 479 545 南北左转 31 4 2 231 114 表 2 信号配时参数取值范围
Table 2. Range of signal-timing parameters
参数 取值范围 周期/s 120≤C≤190 60≤Cm≤95 绿灯时间/s 40≤g11(g31)≤70 20≤g21≤36
11≤g22≤20
20≤g23≤3020≤g12(g32)≤32 28≤g13(g33)≤45 20≤g14(g34)≤31 相位差/s 0≤Offset12≤Cm 0≤Offset23≤C 表 3 各交叉口优化后的配时方案
Table 3. Optimized signal timing schemes for each intersection
交叉口 相位 无车速引导的双周期干线多目标优化模型结果 车速引导下的双周期干线多目标优化模型结果 绿灯时间/s 相位差/s 绿灯时间/s 相位差/s 1牛街 东西直行 74 Offset12=31
Offset23=6349 Offset12=29
Offset23=64东西左转 25 28 南北直行 38 38 南北左转 29 27 2教子胡同 东西直行 33 24 东西左转 18 18 南北直左 26 23 东西直行 73 48 3菜市口 东西左转 31 29 南北直行 35 38 南北左转 27 27 表 4 各方案仿真结果
Table 4. Simulation results of each scheme
方案 干线车均延误/(s/pcu) 干线通行能力/(pcu/h) 干线平均停车次数/(次/pcu) 双周期交叉口次路方向车均延误/(s/pcu) 原配时方案 277.13 1 582.00 6.49 61.49 无车速引导下双周期多目标优化 242.86 1 542.00 7.60 43.13 本文优化方案 222.71 1 671.00 5.76 37.06 表 5 优化结果对比
Table 5. Comparison of the optimization results
结果对比 变化率/% 干线车均延误 干线通行能力 干线平均停车次数 双周期交叉口次路方向车均延误 本文相对于原方案 -19.6 5.6 -11.2 -33.9 本文相对于无车速引导方案 -8.3 8.4 -24.2 -5.8 无车速引导方案相对于原方案 -12.4 -2.5 17.1 -29.9 -
[1] 李瑞敏, 章立辉. 城市交通信号控制[M]. 北京: 清华大学出版社, 2015.LI Ruimin, ZHANG Lihui. Urban traffic signal control[M]. Beiing: Tsinghua University Press, 2015. (in Chinese) [2] 陈昕, 张弛. 基于绿波带中心线交点的双向绿波控制图解法[J]. 辽宁工业大学学报(自然科学版), 2017, 37(2): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-LNGX201702016.htmCHEN Xin, ZHANG Chi. Graphic method of bidirectional green wave control based on centerline intersection of green wave band[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2017, 37(2): 137-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LNGX201702016.htm [3] LU K, HU J, HUANG J, et al. Optimization model for network progression coordinated control under the signal design mode of split phasing[J]. IET Intelligent Transport Systems, 2017, 11(8): 459-466. doi: 10.1049/iet-its.2016.0326 [4] 卢凯, 徐广辉, 林观荣, 等. 绿灯终点型双向绿波协调控制数解算法[J]. 中国公路学报, 2019, 32(11): 202-211. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911021.htmLU Kai, XU Guanghuil, LIN Guanrong, et al. Algebraic method of bidirectional green wave coordinated control of the end of green time[J]. China Journal of Highway and Transport, 2019, 32(11): 202-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911021.htm [5] MAX, MAD, YUAN J, et al. Bandwidth optimisation and parameter analysis at two adjacent intersections based on set operations[J]. IETIntelligent Transport Systems, 2020, 14(7): 684-692. doi: 10.1049/iet-its.2019.0561 [6] WU W, LI P K, ZHANG Y. Modelling and simulation of vehicle speed guidance in connected vehicle environment[J]. International Journal of Simulation Modelling, 2015, 14(1): 145-157. [7] 鹿应荣, 许晓彤, 丁川, 等. 车联网环境下信号交叉口车速控制策略[J]. 交通运输系统工程与信息, 2018, 18(1): 50-58+95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801009.htmLU Yingrong, XU Xiaotong, DING Chuan, et al. A speed control strategy at signalized intersection under connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 50-58+95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801009.htm [8] YANG B W, WANG Y Z, HU J M, et al. A traffic efficiency promotion algorithm for urban arterial roads based on speed guidance[C]. 2013 International Conference on Connected Vehicles and Expo(ICCVE), Las Vegas, USA: IEEE, 2013. [9] 刘洋. 基于多目标优化模型的中小城市信号优化配时研究[D]. 西安: 长安大学, 2017.LIU Yang. The study of optimizing timing signal based on the multi-objective model in the small and medium-sized cities[D]. Xi'an, Chang'an University, 2017. (in Chinese) [10] 王兆艳. 城市道路干线交通信号协调控制与优化研究[D]. 沈阳: 沈阳建筑大学, 2019.WANG Zhaoyan. Study on urban arterial road traffic signal coordinated and optimization[D]. Shenyang: Shenyang Jianzhu University, 2019. [11] 高云峰, 胡华, 韩皓, 等. 城市道路交叉口群信号协调控制多目标优化与仿真[J]. 中国公路学报, 2012, 25(6): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206024.htmGAO Yunfeng, HU Hua, HAN Hao, et al. Multi-objective optimization and simulation for urban road intersection group traffic signal control[J]. China Journal of Highway and Transport, 2012, 25(6): 129-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206024.htm [12] ZHOU H, HAWKINS Jr H G, ZHANG Y. Arterial signal coordination with uneven double cycling[J]. Transportation Research Part A: Policy and Practice, 2017(103): 409-429. http://www.sciencedirect.com/science/article/pii/S0965856416305146 [13] 陈宁宁, 赵力萱, 谢智权, 等. 考虑路口信号周期差异的绿波协调控制算法研究[C]. 第十一届中国智能交通年会, 重庆: 中国智能交通协会, 2016.CHEN Ningning, ZHAO Lixuan, XIE Zhiquan, et al. Algorithm for greenwave coordination control considering signal cycle difference between the intersections[C]. The 11th China Intelligent Transportation Annual Conference, Chongqing: China Intelligent Transportation Association, 2016. (in Chinese) [14] 荆彬彬, 徐建闽, 鄢小文. 适于双周期的干道绿波信号协调控制模型[J]. 交通运输系统工程与信息, 2018, 18(1): 73-80+95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801012.htmJING Binbin, XU Jianmin, YAN Xiaowen. Arterial signal coordination control model for double-cycle signal control[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 73-80+95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801012.htm [15] 荆彬彬, 卢凯, 鄢小文, 等. 车路协同下基于速度引导的双周期干道绿波协调控制方法[J]. 华南理工大学学报(自然科学版), 2016, 44(8): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201608021.htmJING Binbin, LU Kai, YAN Xiaowen, et al. Double-cycle arterial green wave coordination control method based on speed guidance in vehicle infrastructure integration[J]. Journal of South China University of Technology(Natural Science Edition), 2016, 44(8): 147-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201608021.htm [16] 吴伟, 马万经, 杨晓光. 车路协同环境下基于动态车速的相位差优化模型[J]. 控制理论与应用, 2014, 31(4): 519-524. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201404015.htmWU Wei, MA Wanjing, YANG Xiaoguang. Dynamic speed-based signal offset optimization model within vehicle infrastructure integration environment[J]. Control Theory & Applications, 2014, 31(4): 519-524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201404015.htm [17] AKCELIK R. Traffic signals: Capacity and timing analysis(seventh reprint)[R]. ARRBTransport Research Ltd: Australia, 1988. [18] 任福田, 刘小明, 荣建, 等, 译. 美国道路通行能力手册HCM2000[M]. 北京: 人民交通出版社, 2007.REN Futian, LIU Xiaoming, RONG Jian, et al. Trans. American Highway Capacity Manual HCM2000[M]. Beijing: People's Communications Press, 2007. (in Chinese)