Active Traffic Guidance Method for Recurrent Congestion Points
-
摘要:
基于动态用户均衡、系统最优分配的诱导方法,侧重路网需求的宏观预测和调节,难以准确辨识道路拥堵点的关联车流,制约了诱导效果。为精准调控致堵车流,有效缓解常发性拥堵,研究基于需求溯源的主动交通诱导方法。遵循靶向诱导的思路,分析车辆行驶轨迹和常发拥堵点的交通流关联性,运用卡尔曼滤波对关联车流进行短时预测,在此基础上,结合流量占比、路径饱和度等指标,对诱导目标车流进行优选。同时,从负荷均衡的角度出发,基于路段与路径交通流的时空关联更新路网交通状态,建立以饱和度均衡为目标的主动诱导优化模型。仿真结果表明:相比反应型诱导与基于路径偏好的主动型诱导,所提方法使常发拥堵点的车均延误、停车次数等下降30%~60%,路网车均延误、停车次数等下降10%~15%,模型收敛速度提高,交通效益提升,验证了该方法的有效性。
Abstract:Traffic guidance methods based on dynamic user equilibrium and optimal system allocation focus on macro forecasting and adjustment of road network demands. They are difficult to accurately identify related traffic flow, which restricts the guidance effects. An active traffic guidance method based on traceable demand is proposed to control traffic flows and alleviate recurrent congestion. The study following the idea of targeted guidance, analyzes the correlation between vehicle trajectory and traffic flow at frequent congestion points, and uses Kalman filter to make short-term predictions of the associated traffic flow. Furthermore, it is preferable to optimize target traffic flows in combination with indicators such as traffic ratio and path saturation. Meanwhile, based on balanced traffic distribution, the spatio-temporal correlation between the road section and the path traffic flow is used to update the road network traffic state and establish an active induction optimization model with saturation equilibrium as the goal. The simulation results show that, compared with the active induction based on path preference, this method result in a reduction from 30% to 60% in the average delay and the number of stops of vehicles at frequent congestion points, and a reduction from 10% to 15% in the whole road network. The convergence speed and traffic benefit of the model are significantly improved, which verifies the effectiveness of the method in the work.
-
表 1 路径交通流优先度输出值
Table 1. Traffic-guidance priority of traffic flow of paths
路径交通流 xk, t yk, t zk, t Hk, t f2-7-8-17-18-23 0.43 0.34 0.76 0.54 f6-14-15-16-17-18-19-20 0.73 0.82 1.00 0.87 f14-15-16-17-18-19-20 0.92 1.00 0.00 0.00 f15-16-17-18-19-20 1.00 0.57 0.00 0.00 f21-14-15-16-17-18-19-20 0.71 0.65 0.23 0.50 f22-16-17-18-19-20 0.76 0.73 0.47 0.64 f26-22-16-17-18-19-20 0.64 0.81 0.62 0.68 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ -
[1] 李妍峰, 高自友, 李军. 基于实时交通信息的城市动态网络车辆路径优化问题[J]. 系统工程理论与实践, 2013, 33(7): 1813-1819. doi: 10.3969/j.issn.1000-6788.2013.07.022LI Yanfeng, GAO Ziyou, LI Jun. Urban dynamic network vehicle routing optimization based on real-time traffic information[J]. System Engineering Theory and Practice, 2013, 33(7): 1813-1819(in Chinese) doi: 10.3969/j.issn.1000-6788.2013.07.022 [2] 邓卫, 李峻利. 高速公路常发性与偶发性交通拥挤的判别[J]. 东南大学学报, 1994(2): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX402.009.htmDENG Wei, LI Junli. Discrimination between frequent and occasional traffic congestion on expressway[J]. Journal of Southeast University, 1994(2): 60-65(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX402.009.htm [3] SUN Huijun, WU Jianjun, MA Dan, et al. Spatial distribution complexities of traffic congestion and bottlenecks in different network topologies[J]. Applied Mathematical Modelling, 2014, 38(2): 496-505. (in Chinese) doi: 10.1016/j.apm.2013.06.027 [4] WEN Huimin, SUN Jianping, ZHANG Xi. Study on traffic congestion patterns of large city in China taking Beijing as an example[J]. Procedia-Social and Behavioral Sciences, 2014(138): 482-491. http://www.sciencedirect.com/science/article/pii/S1877042814041469/pdf?md5=8046434a6e6d6c6c77c6e971355d0124&pid=1-s2.0-S1877042814041469-main.pdf [5] DEFLORIO F P. Evaluation of a reactive dynamic route guidance strategy[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(5): 375-388. doi: 10.1016/S0968-090X(03)00031-7 [6] ZHANG R, LI Z, FENG C, et al. Traffic routing guidance algorithm based on backpressure with a trade-off between user satisfaction and traffic load[C]. 2012 Vehicular Technology Conference(VTC Fall), Piscataway, NJ, USA: IEEE, 2012. [7] LIANG Z, WAKAHARA Y. Real-time urban traffic amount prediction models for dynamic route guidance systems[J]. Eurasip Journal on Wireless Communications & Networking, 2014(8): 1018-1030. doi: 10.1186/1687-1499-2014-85 [8] JAVED M, ZEADALLY S. RepGuide: Reputation-based route guidance using internet of vehicles[J]. IEEE Communications Standards Magazine, 2019, 2(4): 81-87. http://www.researchgate.net/profile/Muhammad_Awais_Javed3/publication/328283722_RepGuide_Reputation-based_Route_Guidance_using_Internet_of_Vehicles/links/5bc483df299bf1004c5f8c0b/RepGuide-Reputation-based-Route-Guidance-using-Internet-of-Vehicles.pdf [9] FRIESZ T L, KIM T, KWON C, et al. Approximate network loading and dual-time-scale dynamic user equilibrium[J]. Transportation Research Part B: Methodological, 2011, 45(1): 176-207. doi: 10.1016/j.trb.2010.05.003 [10] LONG Jiancheng, CHEN Jiaxu, SZETO W Y, et al. Link-based system optimum dynamic traffic assignment problems with environmental objectives[J]. Transportation Research Part D: Transport & Environment, 2016, 60(6): 56-75. http://www.sciencedirect.com/science/article/pii/S1361920916303248 [11] DABBAS H, FOURATI W, FRIEDRICH B. Using floating car data in route choice modelling-field study[J]. Transportation Research Procedia, 2021(52): 700-707. http://www.sciencedirect.com/science/article/pii/S2352146521001307 [12] BI Y C, LAM W, SUMALEE A, et al. Vulnerability analysis for large-scale and congested road networks with demand uncertainty[J]. Transportation Research Part A: Policy and Practice, 2012, 46(3): 501-516. doi: 10.1016/j.tra.2011.11.018 [13] 张宏雨, 寇玮华. 基于消圈算法的拥挤网络流分流研究[J]. 交通运输工程与信息学报, 2017, 15(3): 84-92+99. doi: 10.3969/j.issn.1672-4747.2017.03.012ZHANG Hongyu, KOU Weihua. Research on congestion network flow diversion based on circle elimination algorithm[J]. Journal of transportation engineering and information, 2017, 15(3): 84-92+99(in Chinese) doi: 10.3969/j.issn.1672-4747.2017.03.012 [14] 韩直, 徐冲聪, 韩嵩乔. 基于短时交通流预测的广域动态交通路径诱导方法[J]. 交通运输系统工程与信息, 2020, 20 (1): 117-123+129. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htmHAN Zhi, XU Chongcong, HAN Songqiao. Wide-area dynamic traffic route guidance method based on short-term traffic flow prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 117-123+129 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm [15] 王福建, 龚成宇, 马东方, 等. 采用交通出行量数据的多点联动瓶颈控制方法[J]. 浙江大学学报(工学版), 2017, 51(2): 273-278. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201702007.htmWANG Fujian, GONG Chengyu, MA Dongfang, et al. Signal coordination control for traffic bottleneck using OD data[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(2): 273-278(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201702007.htm [16] 杨兆升, 朱中. 基于卡尔曼滤波理论的交通流量实时预测模型[J]. 中国公路学报, 1999, 12(3): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199903008.htmYANG Zhaosheng, ZHU Zhong. A real-time traffic volume prediction model based on the Kalman filtering theory[J]. China Journal of Highway and Transport, 1999, 12(3): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199903008.htm [17] 黄裕乔. 动态交通诱导信息时空发布策略研究[D]. 北京: 北京交通大学, 2012.HUANG Yuqiao. Research on spatio-temporal release strategy of dynamic traffic guidance information[D]. Beijing: Beijing Jiaotong University, 2012(in Chinese) [18] 陈芳, 张卫华, 丁恒, 等. 基于出行者路径选择行为的VMS诱导策略研究[J]. 系统工程理论与实践, 2018, 38(5): 1263-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201805016.htmCHEN Fang, ZHANG Weihua, DING Heng, et al. Research on VMS induction strategy based on traveler path selection behavior[J]. Systems Engineering-Theory & Practice, 2018, 38(5): 1263-1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201805016.htm [19] 陈彦如, 蒲云. 用遗传算法解决固定需求交通平衡分配问题[J]. 西南交通大学学报, 2000, 35(1): 44-47. doi: 10.3969/j.issn.0258-2724.2000.01.011CHEN Yanru, PU Yun. Solving traffic equilibrium assignment problem with genetic algorithm[J]. Journal of Southwest Jiaotong University, 2000, 35(1): 44-47. (in Chinese) doi: 10.3969/j.issn.0258-2724.2000.01.011 [20] 杨扬, 姚恩建, 潘龙, 等. 基于GPS数据的出租车路径选择行为研究[J]. 交通运输系统工程与信息, 2015, 15(1): 81-86. doi: 10.3969/j.issn.1009-6744.2015.01.015YANG Yang, YAO Enjian, PAN Long, et al. Study on taxi route selection behavior based on GPS data[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 81-86. (in Chinese) doi: 10.3969/j.issn.1009-6744.2015.01.015