A Data-driven Method for Identifying Congestion State and Selecting Guided Vehicles for Urban Expressways
-
摘要: 交通诱导实施效果不佳的主要原因之一是具有差异性出行特征的出行者无法接受单一的诱导方案。针对城市快速路高峰时段拥堵问题, 研究了考虑车辆出行特征差异的交通诱导对象精准识别方法, 以保障诱导方案的实施效果。利用高德路况数据提取拥堵路段, 根据拥堵路段与相邻路段交通状态的相关性提出拥堵源路段识别方法; 利用车牌识别数据提取使用快速路车辆的出行特征, 包括快速路出行强度、地面道路出行强度、快速路出发时刻离散度和快速路路径选择多样性; 采用K-means++算法对车辆出行特征进行聚类, 识别出显著影响道路交通状态的出行者, 并为出行者推荐适合其出行特征的错峰或绕行诱导方案。以苏州快速路为例, 研究发现: 针对拥堵源路段的交通诱导能有效改善拥堵路段的交通状态; 类型3车辆(高频出行且易绕行)占单月工作日早高峰所有使用快速路车辆总数的14%, 却占单日早高峰总交通量的51%, 是重点诱导对象; 通过精准识别, 可推荐诱导车辆数占总车辆数的47%。Abstract: The inefficient traffic guidance is that travelers are reluctant to accept a single guidance scheme due to heterogeneous travel characteristics. This work proposes an accurate selection method based on the travel characteristics to ensure guidance performance, thus alleviating the peak-hour congestion of the expressways. The congested sections are extracted from a traffic condition dataset of the Gaode map, and the original congested sections are identified according to the correlation of traffic conditions between the congested sections and its adjacent ones. Besides, the travel characteristics of vehicles passing on the expressways are extracted based on the license plate recognition data, including the travel intensity on the expressways, the travel intensity on the ground roads, the dispersion of expressway departure time, and the diversity of the expressway path selection. The travelers significantly affecting the traffic condition of the expressways are identified by the K-means++ clustering algorithm, and appropriate guidance(i.e. staggered shift and detour)is recommended to the identified travelers based on their traveling characteristics. Taking the Suzhou expressway as a case study, the traffic guidance for the original congested sections can improve the traffic condition of congested sections. Type-3 vehicles(high-intensity travel and easy to detour)are the key targets, accounting for only 14% of the total number of vehicles using expressways in the morning peak of working day in one month. However, they constitute 51% of the total traffic volume. There are 47% of vehicles that can be recommended with personalized traffic guidance after congestion-state identification and guided-object selection.
-
表 1 高德数据字段表
Table 1. Fields of the traffic-condition dataset of the Gaode map
字段 中文名 示例 roadid 路段编号 5********9 roadname 路段名称 西环快速路 roadclass 道路等级 快速路 speed 速度/(km/h) 50 stat_time 检测时刻 2020-03-16 T20:38:00 表 2 卡口数据字段表
Table 2. Fields of license plate recognition data
字段 中文名 示例 hphm 号牌号码 苏E***** dwbh 点位编号 3********7 hpys 号牌颜色 蓝色 jgsj 经过时刻 2020-03-16T12:30:07 cdbh 车道编号 1 sbbh 设备编号 3********1 clsd 速度/(km/h) 50 表 3 各路段与拥堵源路段交通状况相关系数
Table 3. Correlation coefficient of traffic conditions between each road section and congested-source road section
区域 路段编号 1 2 3 4 5 6 7 8 a 6 0.75 0.78 0.81 0.84 0.92 1.00 0.36 - b 5 0.73 0.87 0.91 0.99 1.00 0.97 0.92 0.20 c 7 0.57 0.76 0.80 0.92 0.92 0.96 1.00 0.51 d 6 0.6 0.65 0.72 0.78 0.87 1.00 0.86 0.18 表 4 聚类结果统计
Table 4. Statistics of clustering results
类型 车辆数(占比/%) 出行强度/d 快速路出行强度/d 地面道路出行强度/d 快速路出发时刻离散度 快速路路径多样性/个 快速路总出行次数(占比/%) 地面道路总出行次数(占比/%) 1 155 229(17) 16.1 2.4 13.7 0.6 1.5 364 740(10) 2 132 801(54) 2 147 435(16) 9.9 4.9 5.0 3.6 3.6 721 800(20) 734 499(19) 3 121 396(14) 18.2 15.3 2.9 1.5 3.5 1 862 184(51) 346 732(9) 4 474 278(53) 3.1 1.5 1.6 0.2 1.2 711 848(19) 736 385(19) -
[1] 郭继孚, 刁晶晶, 王倩, 等. 预约在城市交通中的应用: 北京市回龙观地区的预约出行实践[J]. 城市交通, 2020, 18(1): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202001013.htmGUO Jifu, DIAO Jingjing, WANG Qian, et al. Reservation in urban transportation system: travel reservation practice in Huilongguan area, Beijing[J]. Urban Transport of China, 2020, 18(1): 75-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202001013.htm [2] 张卫华, 杨朝辉, 李军, 等. 高速公路交通事件下可变限速诱导研究[J]. 广西大学学报(自然科学版), 2021, 46(3): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202103023.htmZHANG Weihua, YANG Zhaohui, LI Jun, et al. Study on variable speed limit induction under freeway traffic accident[J]. Journal of Guangxi University(Natural Science Edition), 2021, 46(3): 737-746. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202103023.htm [3] 白紫秀, 焦朋朋, 陈越, 等. 预约出行条件下私家车通勤客流分配方法[J]. 交通信息与安全, 2021, 39(4): 117-124. doi: 10.3963/j.jssn.1674-4861.2021.04.015BAI Zixiu, JIAO Pengpeng, CHEN Yue, et al. An assignment method of commuter flow of private cars under travel reservation[J]. Journal of Transport Information and Safety, 2021, 39(4): 117-124. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.015 [4] XIONG Chenfeng, SHAHABI M, ZHAO Jun, et al. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems[J]. Transportation Research Part C: Emerging Technologies, 2020, 113(4): 57-73. [5] LI Linchao, ZHANG Jian, WANG Yonggang, et al. Missing value imputation for traffic-related time series data based on a multi-view learning method[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2933-2943. doi: 10.1109/TITS.2018.2869768 [6] ZHANG Wenliang, JI Xinkai, ZHANG Jian, et al. Freeway traffic state estimation and prediction based on ETC-based path identification toll system[C]. 17thCOTA International Conference of Transportation Professionals, Shanghai, China: COTA, 2017. [7] 刘治彦, 岳晓燕, 赵睿. 我国城市交通拥堵成因与治理对策[J]. 城市发展研究, 2011, 18(11): 90-96. doi: 10.3969/j.issn.1006-3862.2011.11.018LIU Zhiyan, YUE Xiaoyan, ZHAO Rui. The cause of urban traffic congestion and countermeasures in China[J]. Urban Development Studies, 2011, 18(11): 90-96. (in Chinese) doi: 10.3969/j.issn.1006-3862.2011.11.018 [8] 王振坡, 张馨芳, 宋顺锋. 我国城市交通拥堵成因分析及政策评价: 以天津市为例[J]. 城市发展研究, 2017, 24(4): 118-124. doi: 10.3969/j.issn.1006-3862.2017.04.017WANG Zhenpo, ZHANG Xinfang, SONG Shunfeng. Cause analysis and policy evaluation of urban traffic congestion in China: A case study of Tianjin[J]. Urban Development Studies, 2017, 24(4): 118-124. (in Chinese) doi: 10.3969/j.issn.1006-3862.2017.04.017 [9] 闫学东, 刘晓冰, 刘炀, 等. 基于浮动车大数据与网格模型的城市交通拥堵识别和评价研究[J]. 北京交通大学学报, 2019, 43(1): 104-113. doi: 10.11860/j.issn.1673-0291.2019.01.012YAN Xuedong, LIU Xiaobing, LIU Yang. Identification and evaluation of urban traffic congestion based on the big data of floating vehicles and grid modeling[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 104-113. (in Chinese) doi: 10.11860/j.issn.1673-0291.2019.01.012 [10] WANG Jiechen, WU Jiayi, NI Jianhua, et al. Relationship between urban road traffic characteristics and road grade based on a time series clustering model: A case study in Nanjing, China[J]. Chinese Geographical Science, 2018, 28(6): 1048-1060. doi: 10.1007/s11769-018-0982-2 [11] 张扬. 上海市快速路拥堵关键节点成因溯源案例分析[J]. 交通与运输, 2020, 36(5): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJT202005006.htmZHANG Yang. Shanghai urban expressway congestion source in key locations[J]. Traffic & Transportation, 2020, 36(5): 19-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJT202005006.htm [12] 何兆成, 周亚强, 余志. 基于数据可视化的区域交通状态特征评价方法[J]. 交通运输工程学报, 2016, 16(1): 133-140. doi: 10.3969/j.issn.1671-1637.2016.01.016HE Zhaocheng, ZHOU Yaqiang, YU Zhi. Regional traffic state evaluation method based on data visualization[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 133-140. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.01.016 [13] 张溪, 孙建平, 温慧敏. 城市快速路常发拥堵路段及拥堵瓶颈点识别方法研究[C]. 第十二届中国智能交通年会, 江苏, 常熟: 中国智能交通协会, 2017.ZHANG Xi, SUN Jianping, WEN Huimin. Research on the recognition methods of frequent congested road and bottleneck for urban expressway[C]. 12thAnnual Conference of ITS China, Changshu, Jiangsu: China Intelligent Transportation Systems Association, 2017. (in Chinese) [14] 张建旭, 郭力玮. 基于在线地图交通态势分析的路网拥堵状态识别[J]. 交通运输系统工程与信息, 2018, 18(5): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805012.htmZHANG Jianxu, GUO Liwei. Congestion status recognition of road network based on traffic situation analysis of online map[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 75-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805012.htm [15] CHEN Huiyu, CHAO Yang, XU Xiangdong. Clustering vehicle temporal and spatial travel behavior using license plate recognition data[J]. Journal of Advanced Transportation, 2017(2017): 1-14. [16] 畅玉皎, 杨东援. 基于车牌照数据的通勤特征车辆识别研究[J]. 交通运输系统工程与信息, 2016, 16(2): 77-82+112. doi: 10.3969/j.issn.1009-6744.2016.02.014CHANG Yujiao, YANG Dongyuan. Recognition of vehicles with commuting property using license plate data[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 77-82+112. (in Chinese) doi: 10.3969/j.issn.1009-6744.2016.02.014 [17] 吕亮, 钟添翼, 王世彬, 等. RFID数据驱动下出行路径选择方法研究[J]. 公路与汽运, 2021(1): 16-20+37. doi: 10.3969/j.issn.1671-2668.2021.01.005LYU Liang, ZHONG Tianyi, WANG Shibin, et al. Research on travel path selection method driven by RFID data[J]. Highways & Automotive Applications, 2021(1): 16-20+37. (in Chinese) doi: 10.3969/j.issn.1671-2668.2021.01.005 [18] XIE Yifei, DANAF M, AZEVEDO C L, et al. Behavioral modeling of on-demand mobility services: general framework and application to sustainable travel incentives[J]. Transportation, 2019, 46(6): 2017-2039. doi: 10.1007/s11116-019-10011-z [19] 李颖, 赵莉, 赵祥模, 等. 基于大货车GPS数据的轨迹相似性度量有效性研究[J]. 中国公路学报, 2020, 33(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002014.htmLI Ying, ZHAO Li, ZHAO Xiangmo, et al. Effectiveness of trajectory similarity measures based on truck GPS data[J]. China Journal of Highway and Transport, 2020, 33(2): 146-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002014.htm [20] YODER J Y, PRIEBE C E. Semi-supervised K-means++[J]. Journal of Statistical Computation and Simulation, 2017, 87(13): 2597-2608. doi: 10.1080/00949655.2017.1327588