Development and Classification of Lane-changing Graph Based on Multi-view Collaborative and Interactive Techniques
-
摘要:
为直观展示换道过程中驾驶人视觉感知与手脚操作的细节特征,研究了多视图协同可视化的换道图谱。采用驾驶模拟舱进行高速公路驾驶实验,提取换道过程相关指标数据。将平行坐标、计数图、柱状图与换道轨迹协同可视化以构建换道图谱。采用多视图交互技术对提取的40个换道过程进行分析,提出换道过程的合格区范围并以此将换道图谱分为合格、临界合格和不合格3类,并对不合格图谱进行致因分析。结果表明,合格、临界合格和不合格图谱的比例分别为10.00%、12.50%和77.50%。不合格图谱的转向盘转速、加速度、横向加速度的平均标准差(6.57°;0.91 m/s2;0.41 m/s2)都大于合格图谱的平均标准差(4.55°;0.34 m/s2;0.17 m/s2)。导致图谱不合格的主要因素是:驾驶人手的急速操作引起转向盘转动幅度过大、横向加速度过大;驾驶人脚的急速操作引起纵向加速度的变化幅度过大。换道图谱能够精准地对换道过程进行可视化分析与诊断,为驾驶人优化换道行为提供支撑。
Abstract:This paper aims to intuitively display the details of drivers' visual perception and related driving behavior in the lane-changing process by developing a multi-view collaborative visualization-based lane-changing graph. Specifically, driving behavior data related to lane-changing process are extracted from a simulated expressway, which is carried out by a driving simulator. The lane-changing graph is developed by coordinating parallel coordinates, count diagram, and bar chart with lane-changing trajectory. Following the analysis of 40 data sets of lane-changing behavior using the multi-view technique and the criteria for qualified lane-changing area, the lane-changing behavior is then classified into"Qualified""Barely Qualified", and"Unqualified". Meanwhile, the reasons of the unqualified lane-changing processes are also studied. The results show that the proportions of"Qualified""Barely Qualified", and"Unqualified"processes are 10.00%, 12.50%, and 77.50% respectively. The average standard deviations of the turning speed of the steering wheel, acceleration, and lateral acceleration observed over the unqualified processes (6.57°; 0.91 m/s2;0.41 m/s2) are larger than those observed over the qualified processes (4.55°; 0.34 m/s2;0.17 m/s2). The reasons for showing unqualified processes are mainly twofold: excessive lateral acceleration due to a large turning angle of the steering wheel and excessive change of longitudinal acceleration due to inappropriate operation of the gas panel. In general, the lane-changing graph can analyze and diagnose the lane-changing process accurately, which can provide supports for optimizing driver behavior in the lane-changing process.
-
表 1 转向盘操作的分类
Table 1. Classification of steering wheel operation
类别 转向盘旋转速度ω的分类 急速左转 98%分位数≤ω 缓慢左转 75%分位数≤ω < 98%分位数 保持不动 25%分位数≤ω < 75%分位数 缓慢右转 2%分位数≤ω < 25%分位数 急速右转 ω < 2%分位数 表 2 3类图谱的指标标准差
Table 2. The SD of the indexes of three types of graphs
指标 合格图谱 临界合格图谱 不合格图谱 转向盘转速标准差/(°) 4.55 5.27 6.57 油门踏板标准差/% 12.48 11.94 20.12 速度标准差/(km/h) 5.74 3.66 6.80 横向位置标准差/m 1.40 1.63 1.60 加速度标准差/(m/s2) 0.34 0.29 0.91 横向加速度标准差/(m/s2) 0.17 0.25 0.41 刹车踏板标准差/% 0.00 0.00 2.45 表 3 导致图谱不合格的异常指标数
Table 3. The number of abnormal indexes resulting in the unqualified
异常指标数 不合格图谱的数量 占所有不合格图谱的比例/% 2 4 12.90 3 9 29.03 4 10 32.26 5 3 9.68 6 3 9.68 7 1 3.23 8 1 3.23 9 0 0.00 10 0 0.00 表 4 临界合格和不合格图谱中异常指标的频繁项
Table 4. Frequent items of abnormal indexes in critical qualified and unqualified graphs
指标 影响频率/% 频繁1项集 {转向盘角度} 63.89 {手的急速操作} 63.89 {横向加速度} 58.33 {脚的急速操作} 55.56 {加速度} 36.11 频繁2项集 {转向盘角度,手的急速操作} 55.56 {转向盘角度,横向加速度} 44.44 {横向加速度,手的急速操作} 41.67 {手的急速操作、脚的急速操作} 36.11 {脚的急速操作,转向盘角度} 33.33 频繁3项集 {转向盘角度,手的急速操作,横向加速度} 38.89 {转向盘角度,手的急速操作,脚的急速操作} 30.56 -
[1] 谷新平, 韩云鹏, 于俊甫. 基于决策机理与支持向量机的车辆换道决策模型[J]. 哈尔滨工业大学学报, 2020, 52(7): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202007016.htmGU X P, HAN Y P, YU J F. Vehicle lane-changing decision model based on decision mechanism and support vector machine[J]. Journal of Harbin Institute of Technology, 2020, 52 (7): 111-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202007016.htm [2] 陆建, 李英帅. 车辆换道行为建模的回顾与展望[J]. 交通运输系统工程与信息, 2017, 17(4): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201704008.htmLU J, LI Y S. Review and outlook of modeling of lane changing behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 48-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201704008.htm [3] KUMAR P, PERROLLAZ M, LEFEVRE S, et al. Learning-based approach for online lane change intention prediction[C]. 2013 IEEE Intelligent Vehicles Symposium(IV), Gold Coast, Australia: IEEE, 2013. [4] MANDALIA H M, SALVUCCI D D. Using support vector machines for lane-change detection[C]. The Human Factors & Ergonomics Society Annual Meeting, Orlando, FL, United states: Human Factors an Ergonomics Society Inc, 2005. [5] LIU L, XU G, SONG Z. Driver lane changing behavior analysis based on parallel Bayesian networks[C]. 6th International Conference on Natural Computation, Yantai, China: IEEE, 2010. [6] KUGE N, YAMAMURA T, SHIMOYAMA O, et al. A driver behavior recognition method based on a driver model framework[C]. SAE 2000 World Congres, Detroit, MI, United States: SAE International, 2000. [7] PENTLAND A, LIU A. Modeling and prediction of human behavior[J]. Neural Computation, 1999(11): 229-242. [8] 王一男. 基于隐马尔科夫模型的驾驶员换道驾驶意图识别方法研究[D]. 长春: 吉林大学, 2020.WANG Y N. Drivers' lane changing intention recognition method research based on Hidden Markov Model[D]. Changchun: Jilin University, 2020. (in Chinese) [9] 宗长富, 王畅, 何磊, 等. 基于双层隐式马尔科夫模型的驾驶意图辨识[J]. 汽车工程, 2011, 33(08): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201108013.htmZONG C F, WANG C, HE L, et al. Driving intention recognition based on double-layer HMM[J]. Automoltive Engineering, 2011, 33(8): 701-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201108013.htm [10] 胡少伟. 基于驾驶意图识别的主动换道系统研究[D]. 北京: 清华大学, 2019.HU S W. Research on active lane changeSystem based on driving intention recognition[D]. Beijing: Tsinghua University, 2019. (in Chinese) [11] PENG J, GUO Y, FU R, et al. Multi-parameter prediction of drivers' lane-changing behaviour with neural network model[J]. Applied Ergonomics, 2015(50): 207-217. [12] WIRTHMUELLER F, KLIMKE M, SCHLECHTRIEMEN J, et al. Predicting the time until a vehicle changes the lane using LSTM-based Recurrent Neural Networks[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2357-2364. doi: 10.1109/LRA.2021.3058930 [13] GEBERT P, ROITBERG A, HAURILET M, et al. End-to-end prediction of driver intention using 3D convolutional neural networks[C]. 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France: IEEE, 2019. [14] GIPPS P. G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological. 1986, 20(5): 403-414. doi: 10.1016/0191-2615(86)90012-3 [15] HUNT G J, LYONS D G. Modelling dual carriageway lane changing using neural networks[J]. Transportation Research Part C: Emerging Technologies, 1994, 2(4): 231-245. doi: 10.1016/0968-090X(94)90012-4 [16] 房哲哲. 基于深度学习的换道行为建模与分析[D]. 北京: 北京交通大学, 2018.FANG Z Z. Modeling and analysis of the lane-changing behavior through deep learning[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese) [17] MORIDPOUR S, SARVI M, ROSE G, et al. Lane-changing decision model for heavy vehicle drivers[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2012, 16(1): 24-35. doi: 10.1080/15472450.2012.639640 [18] 许伦辉, 倪艳明, 罗强, 等. 基于最小安全距离的车辆换道模型研究[J]. 广西师范大学学报(自然科学版), 2011, 29 (4): 1-6. doi: 10.3969/j.issn.1001-6600.2011.04.001XU L H, NI Y M, LUO Q, et al. Lane-changing model based on minimum safety distance[J]. Journal of Guangxi Normal University: Natural Science Edition, 2011, 29(4): 1-6. (in Chinese) doi: 10.3969/j.issn.1001-6600.2011.04.001 [19] 刘晨强. 车辆轨迹数据与换道行为特性研究[D]. 北京: 北京工业大学, 2018.LIU C Q. Research on vehicle trajectory the characteristics of lane-changing behavior[D]. Beijing: Beijing University of Technology, 2018. (in Chinese) [20] 伍毅平. 生态驾驶行为特征甄别及反馈优化方法研究[D]. 北京: 北京工业大学, 2017.WU Y P. Research on eco-driving behavior characteristics identification and feedback optimization method[D]. Beijing: Beijing University of Technology, 2017. (in Chinese) [21] WANG W, ZHANG W, GUO H, et al. A safety-based approaching behavioural model with various driving characteristics[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1202-1214. doi: 10.1016/j.trc.2011.02.002 [22] 刘畅, 亓航, 陈晨. 基于安全驾驶行为风险特征的图谱表达方法[J]. 交通工程, 2019, 19(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201906003.htmLIU C, QI H, CHEN C. Graph expression method based on risk characteristics of safedriving behavior[J]. Journal of Transportation Engineering, 2019, 19(6): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201906003.htm [23] 伍毅平, 赵晓华. 基于图谱的个体驾驶行为特征描述方法研究[J]. 交通工程, 2018, 18(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201801003.htmWU Y P, ZHAO X H. A graph based method to describe individual driving behavior[J]. Journal of Transportation Engineering, 2018, 18(1): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201801003.htm [24] 郑淑欣. 基于循环神经网络的车辆换道轨迹评价方法研究[D]. 北京: 北京工业大学, 2020.ZHENG S X. Research on evaluation method of lane-changing trajectory based on recurrent neural network[D]. Beijing: Beijing University of Technology, 2020. [25] 李慧轩. 基于驾驶行为动态获取的换道行为微观建模及仿真校验研究[D]. 北京: 北京交通大学, 2016.LI H X. Research on microscopic modeling and simulation validation of lane changing behavior based on dynamic acquisition of driving behavior[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese) [26] 龙彦, 黄建玲, 赵晓华. 换道过程中驾驶人感知操作的模式发现与规则挖掘[J]. 交通运输系统工程与信息, 2021, 21 (3): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103030.htmLONG Y, HUANG J L, ZHAO X H. Pattern discovery and rule mining of drivers' per ception and operation during lane changing process[J]. Journal of Transportation Systems Engineering and Infomation Technology, 2021, 21(3): 237-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103030.htm [27] 陈谊, 蔡进峰, 石耀斌, 等. 基于平行坐标的多视图协同可视分析方法[J]. 系统仿真学报, 2013, 25(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201301016.htmCHEN Y, CAI J F, SHI Y B, et al. Coordinated visual analytics method based on multiple views with parallel coordinates[J]. Journal of System Simulation, 2013, 25(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201301016.htm [28] INSELBERG A. Parallel coordinates: A tool for visualizing multidimensional geometry[C]. The lst IEEE Conference on Visualization, San Francisco, CA, United States: IEEE, 1990 [29] 张信雪, 吕晓琪, 张继凯, 等. 基于平行坐标的航道规划可视化分析研究[J]. 海洋环境科学, 2019, 38(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201901013.htmZHANG X X, LYU X Q, ZHANG J K, et al. Visualization analysis of channel planning based on parallel[J]. Marine Environmental Science, 2019, 38(1): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201901013.htm [30] 孙玮. 基于平行坐标可视化的滑坡预报预警研究[D]. 武汉: 武汉大学, 2013.SUN W. Research on landslides early warning based on parallel coordinate visualization[D]. Wuhan: Wuhan University, 2013. (in Chinese)