A Site Evaluation of Water Aerodrome Based on Combined Weighting and a Cloud Model
-
摘要: 当水上机场与航道共处于同一片水域时,难免会形成水上飞机与船舶的会遇局面,对水上飞机的起降、滑行安全以及附近水域的船舶航行安全造成影响。为保障水上飞机和船舶的安全,评价水上机场场址的合理性与安全性尤为重要。提出了组合赋权和云模型相结合的水上机场场址评价方法,选取了气象环境、水文环境、通航环境和起降水域空域环境4个一级评价指标和11个二级评价指标,构建了水上机场场址评价指标体系。利用改进层次分析法与熵权法分别求得评价指标的主客观权重,以偏差极小化为目标,引入对策模型计算主客观权重最优的线性组合系数,获得组合权重,结合云模型构建了水上机场场址综合评价模型。以镇江大路水上机场为例进行实例验证,结果表明:镇江大路水上机场场址的评价结果为较好。该机场自建成运营以来未发生安全事故,评价结果与该机场的实际运营情况相符。同时在计算过程中云模型兼顾了数据的随机性和模糊性,可以较好地解决模糊综合评价法在隶属度函数选择时的不确定性问题,进一步增加了评价结果的可靠性。与经典的模糊综合评价法进行对比验证,二者的评价结果一致,验证了该模型的有效性和实用性,该模型可用于拟建水上机场的选址,也可对已建机场的营运安全进行评估分析。Abstract: When a water aerodrome and a navigation channel coexist on a same water surface, seaplanes and ships may encounter each other, which may influence the takeoff, landing, and taxiing of seaplanes, and the navigation safety of vessels in nearby waters. To ensure the safety of seaplanes and vessels, it is extremely important to evaluate the rationality and the safety of water aerodrome site. A method for site evaluation of water aerodrome based on a combined weighting method and a cloud model is proposed. An evaluation system is developed in order to appropriately evaluate the appropriateness of the site of water aerodrome, which include four first-level and 11 second-level indicators from the following aspects: meteorological, hydrological, navigable, and airspace environment. An improved analytic hierarchy process and an entropy weight method are used to obtain the subjective and objective weights of the evaluation indicators, respectively. Then, a gaming model is used to determine the optimal linear combination coefficients of these subjective and objective weights by minimizing the deviation, in order to find the combined weights. A synthetic evaluation model based on combined weighting and a cloud model is developed. Taking Dalu water aerodrome in the City of Zhenjiang as a case study, study results show that the evaluation result of the site of water aerodrome is good. There hasn't been no accident since the water aerodrome is under operation. The evaluation result is consistent with observed safety condition of the airport. The cloud model used can well address the uncertainty in the selection of the membership function by balancing the randomness and fuzziness of data in the evaluation process of any evaluation method using fuzzy mathematics, which further increases the reliability of the evaluation results from the proposed method. Study results show that the evaluation outcomes from the proposed method are similar to those from the classical fuzzy comprehensive evaluation method, which verifies the validity as well as the practicability of the model. The proposed model can be applied for the site selection of the water aerodromes to be built, and also for the evaluation of the safety of existing water aerodromes.
-
Key words:
- traffic safety /
- water aerodrome /
- site evaluation /
- combination weighting /
- game theory /
- cloud model
-
表 1 水上机场场址评价指标
Table 1. Evaluation indicators of water aerodrome site
指标 描述 风速A1 机体受风的影响较大,风速越大,起降危险程度越高 气象环境A 跑道与盛行风夹角A2 跑道方向应尽可能与盛行风方向一致,二者夹角越大,飞机起降越危险 能见度不良天数A3 水上飞机目视起降,能见度不良天气对飞机起降安全影响大 流速B1 水上跑道水流流速宜小于1.5 m/s 水文环境B 水深B2 水深应满足机型满载吃水要求,且有足够的富裕水深 潮汐B3 潮差越大,可能致低潮时水深不足而需疏浚跑道,建设成本就越大 浪高B4 水面扰动以适度为宜,涟漪或者浪高在7.5~15 cm之间为好 通航环境C 船舶流量C1 水上机场附近水域船舶流量越大,对水上飞机运营安全影响越大 与航道间距C2 机场与航道的间距越近,船舶与飞机的相互影响越大,碰撞危险程度越高 起降水域的空域环境D 与桥梁、架空电缆距离D1 桥梁、架空电缆与跑道前方距离越近,对水上飞机的起降安全影响越大 航道与跑道前方交叉,船舶水线上高度D2 船舶水线以上高度越高,飞机起降跨越船舶上空时危险程度越大 表 2 评价等级云数字特征
Table 2. Cloud digital characteristics of evaluation grade
评价等级 区间 Ex En He 差 [0, 2] 1 0.33 0.05 较差 [2, 4] 3 0.33 0.05 一般 [4, 6] 5 0.33 0.05 较好 [6, 8] 7 0.33 0.05 好 [8, 10] 9 0.33 0.05 表 3 指标权重
Table 3. Index weights
指标 A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 w1 0.117 3 0.117 3 0.064 0 0.117 3 0.051 6 0.057 4 0.081 8 0.146 5 0.081 8 0.092 5 0.072 5 w2 0.089 3 0.118 6 0.1028 0.051 9 0.075 5 0.108 4 0.061 2 0.1529 0.103 8 0.076 5 0.059 1 w* 0.099 8 0.118 1 0.088 2 0.076 5 0.066 5 0.089 3 0.069 0 0.150 5 0.095 5 0.082 5 0.064 1 表 4 指标等级划分
Table 4. Index grade division
等级指标 好[8, 10] 较好[6, 8] 一般[4, 6] 较差[2, 4] 差[0, 2] 风速(m/s) < 3 3~4 4~5 5~6 > 6 与盛行风夹角(°) < 18 18 ~36 36~54 54~72 72~90 雾天/d < 20 20 ~40 40~60 60~80 > 80 流速(m/s) < 0.75 0.75 ~1.5 1.5 ~2.25 2.25~3 > 3 水深(m) > 2.5 2.0 ~2.5 1.5 ~2.0 1.0 ~1.5 < 1.0 潮差(m) < 0.6 0.6 ~1.2 1.2 ~1.8 1.8 ~2.4 > 2.4 浪高/(cm) < 15 15~30 30~45 45~60 > 60 船舶流量(艘/d) < 200 200~300 300~400 400~500 > 500 与航道间距/(m) > 200 150~200 100~150 50~100 < 50 桥梁架空电缆与跑道前方距离(m) > 2 500 > 2 000~2 500 > 1 500~2 000 > 1 000~1 500 < 1 000 船舶水线上高度/(m) ≤ 5 > 5 ~10 > 10 ~15 > 15 ~20 > 20 表 5 量纲统一数据
Table 5. Dimensional unified data
指标 评分值 A1 8.3 8.6 7.9 8.4 8.2 7.8 8.3 8.6 8.9 8.7 8.1 8.5 A2 5.9 6.0 5.5 5.6 6.1 6.2 5.7 5.5 5.8 6.1 6.2 6.1 A3 5.2 5.1 5.4 5.5 5.6 5.3 5.4 5.0 5.1 4.9 5.4 5.5 B1 8.7 8.8 8.5 8..6 8.9 8.8 8.3 8.4 8.6 8.1 8.2 8.7 B2 5.2 5.1 5.3 5.4 5.2 5.0 5.3 4.9 5.1 5.1 4.8 4.9 B3 6.6 6.8 6.6 6.7 7.4 7.5 7.2 6.8 6.9 7.0 7.2 7.1 B4 7.9 8.1 7.8 7.6 8.1 8.2 7.9 7.5 7.8 8.2 7.7 7.5 C1 9.1 8.8 7.8 8.7 8.6 7.9 8.6 8.7 7.7 8.4 8.5 8.3 C2 8.5 8.6 8.4 7.7 8.7 8.6 8.2 8.3 7.8 7.9 8.4 8.7 D1 8.3 8.4 8.1 7.8 8.2 8.5 8.4 7.9 7.7 8.6 8.5 8.4 D2 8.4 8.8 8.1 8.3 8.2 8.4 9.0 8.5 8.6 8.7 8.8 8.7 表 6 指标云数字特征参数
Table 6. Indicator cloud digital characteristic parameters
指标 Ex En He A1 8.358 3 0.353 2 0.135 9 A2 5.891 7 0.309 5 0.160 9 A3 5.283 3 0.254 5 0.126 3 B1 8.550 0 0.284 8 0.128 8 B2 5.108 3 0.195 6 0.068 5 B3 6.983 3 0.341 8 0.162 0 B4 7.858 3 0.284 8 0.129 1 C1 8.425 0 0.461 4 0.170 5 C2 8.316 7 0.383 6 0.160 1 D1 8.233 3 0.334 2 0.1543 D2 8.541 7 0.307 6 0.145 2 -
[1] 中国民用航空局机场司. 水上机场技术要求(试行): AC-158-CA-2017-01[S/OL]. 北京, 2017.Civil Aviation Administration of China. Technical requirements for water aerodrome: AC-158-CA-2017-01[S/OL]. Beijing, 2017. http://www.ccaonline.cn/zhengfu/xg-zhenggu/386041.html. (in Chinese) [2] DING D L, CAI L C, WANG X L, et al. Application of com-prehensive evaluation of the airport site selection[J]. Applied Mechanics and Materials, 2011, 97-98: 311-315. doi: 10.4028/www.scientific.net/AMM.97-98.311 [3] QIAO L, ZHANG L. Evaluation of general airport site selection based on synthetic weighting method and grey fuzzy theory[C]. The 2018 International Conference on Sports, Arts, Education and Management Engineering, Taiyuan: Guangzhou Civil Aviation College, 2018. [4] 卢厚清, 刘诚, 杨海明, 等. 基于PCA的机场选址问题综合评价模型[J]. 交通工程, 2012(5): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201205019.htmLU H Q, LIU C, YANG H M, et al. Comprehensive evaluation on airport location based on PCA[J]. Traffic Engineering, 2012(5): 50-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201205019.htm [5] WANG Z H, CAI L C, CHONG X L, et al. Airport site selection based on uncertain multi-attribute decision making[C]. 8th International Conference of Chinese Logistics & Transportation Professionals, Baoding: China Communications and Transport Association, 2009. [6] 刘照博. 民用机场选址评价与优化研究[D]. 天津: 中国民航大学, 2015.LIU Z B. Research on the evaluation optimization site selection of civil airport[D]. Tianjin: Civil Aviation University of China, 2015. (in Chinese) [7] 张世迪, 种小雷, 耿昊, 等. 基于组合赋权与云模型的机场选址方案评价[J]. 中国民航大学学报, 2018, 36(5): 34-37. doi: 10.3969/j.issn.1674-5590.2018.05.007ZHANG S D, CHONG X L, GENG H, et al. Airport site selection scheme evaluation based on combination weighting and cloud model[J]. Journal of Civil Aviation University of China, 2018, 36(5): 34-37. (in Chinese) doi: 10.3969/j.issn.1674-5590.2018.05.007 [8] 翁建军, 秦亚非, 袁丹, 等. 基于三维动态领域的水上飞机与船舶碰撞危险度研究[J]. 交通信息与安全, 2020, 38(3): 1-7+31. doi: 10.3963/j.jssn.1674-4861.2020.03.0011WENG J J, QIN Y F, YUAN D, et al, Study on the collision risk index between seaplane and ship based on three-dimen-sional dynamic domain[J]. Journal of Transport Information and Safety, 2020, 38(3): 1-7+31. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.03.0011 [9] 冯汉卿, 郝航程. 海口市水上机场规划[J]. 交通与运输, 2020, 36(1): 46-50. doi: 10.3969/j.issn.1671-3400.2020.01.015FENG H Q, HAO H C. Planning of water aerodrome in Haikou[J]. Traffic and Transportation, 2020, 36(1): 46-50. (in Chinese) doi: 10.3969/j.issn.1671-3400.2020.01.015 [10] 陈俊锋. 基于AHP-TOPSIS的水上机场选址研究[D]. 武汉: 武汉理工大学, 2018.CHEN J F. Research on the site selection of water aerodrome based on AHP and TOPSIS[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese) [11] 陈俊锋, 翁建军, 吴兵, 等. 基于熵权-TOPSIS的水上机场选址研究[J]. 交通信息与安全, 2018, 36(2): 112-119. doi: 10.3963/j.issn.1674-4861.2018.02.016CHEN J F, WENG J J, WU B, et al, Afacility location model based on entropy and TOPSIS for sea drones[J]. Journal of Transport Information and Safety, 2018, 36(2): 112-119. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.02.016 [12] 任银龙, 鲍学英. 基于博弈论-云模型的铁路绿色施工环境影响综合评价[J] IOL. 公路工程: 1-14. http://kns.cnki.net/kcms/detail/43.1481.U.20210408.1153.028.html.REN Y L, BAO X Y. Comprehensive evaluation of environmental impact of railway green construction based on game theory-cloud model[J]. Highway Engineering, 1-14. (in Chinese) [13] 舒孝珍. 一种改进的层次分析法在出行方式选择中的应用[J]. 绵阳师范学院学报, 2021, 40(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MYSF202102002.htmSHU X Z. Application of improved AHP in travel mode selection[J]. Journal of Mianyang Teschers'College, 2021, 40(2): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MYSF202102002.htm [14] 李刚, 李建平, 孙晓蕾, 等[J]. 主客观权重的组合方式及其合理性研究[J]. 管理评论, 2017, 29(12): 17-26+61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201712003.htmLI G, LI J P, SUN X L, et al. Study on the combination of subjective and objective weight and its rationality[J]. Management Review, 2017, 29(12): 17-26+61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201712003.htm [15] 徐建闽, 韦佳, 首艳芳. 基于博弈论-云模型的城市道路交通运行状态综合评价[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF202004001.htmXU J M, WEI J, SHOU Y F. Comprehensive evaluation of ur-ban road traffic operation Status based on game theory-cloud model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF202004001.htm [16] 盛昀, 方学东, 冯自立. 基于博弈论组合赋权的机场净空障碍物风险性评价[J]. 民航学报, 2020, 4(5): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE202005010.htmSHENG Y, FANG X D, FENG Z L. Risk assessment of airport clearance obstacle based on combination weighting of game theory[J]. Journal of Civil Aviation, 2020, 4(5): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE202005010.htm [17] 佟馨, 江福才, 郭颜斌, 等. 长江航道航行环境风险评价[J]. 上海海事大学学报, 2017, 38(4): 32-36+42. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY201704009.htmTONG X, JIANG F C, GUO Y B, et al. Navigation environment risk assessment of Yangtze River[J]. Journal of Shang-hai Maritime University, 2017, 38(4): 32-36+42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY201704009.htm [18] Federal Aviation Administration. Advisory Circular for Seaplane Bases: 150/5395-1A[S/OL]. (2013-08-06)[2022-01-09]. http://www.faa.gov/regulationspoolicies/adviso-rycirculars/index,cfm/go/document.information/documentID/1021815. [19] EuropeanCommunity-EuropeanRegionalDevelopmentFound. Seaplane sustainable and efficient air transport platform for linked analysis of the north sea transport environment[R/OL]. (2002-11-30)[2022-01-09]. http://seaplaneproject.net/. [20] ZHUANG W X, GUO G P. Research and countermeasures on lng ship port area navigation risk assessment based on fuzzy comprehensive evaluation method[C]. 8th International Conference on Coastal and Ocean Engineering, Tokyo: Chemietry & Bioengineering, 2021. [21] 钟鸣. 基于关联规则和云模型的水库诱发地震风险多层次模糊综合评价[D]. 武汉: 华中科技大学, 2013.ZHONG M. Multi-lever fuzzy comprehensive evaluation of reservoir induced seismic risk based on association rules and cloud model[D]. Wuhan: Huazhong University of science & Technology, 2013.( in Chinese)