A Signal Control Method for Bus Priority Considering the Delay of Non-priority Vehicles in a Connected-vehicle Environment
-
摘要: 网联环境具有数据采集和交互方面的优势,能更精确地评估交通需求,更科学地实施交通管控措施。根据公交车与非优先车辆权重及延误分布差异,研究了考虑非优先车辆延误的公交优先单点信号控制方法。利用交叉口车辆轨迹数据计算轨迹样本到达率参数,根据车辆到达交叉口的分布特征构建各相位的车辆到达率概率函数,并采用极大似然估计预测到达率,基于交通流冲击波模型分别计算出各相位的排队波、驶离波和消散波波速。公交车数量少权重较高且网联化程度高,利用基于冲击波的时距图推导延误表达式;而非优先车辆数量多单车权重低且网联化程度低,利用基于到达率的定数理论推导延误表达式。按乘员数对公交车延误值和非优先车辆延误值进行加权,以加权延误最小为目标函数建立了混合整数线性规划模型,解得相位时长整数解,并反馈到信号机系统实现公交优先自适应信号控制。以武汉市车城北路与东风大道交叉口为对象,采集不同时段交叉口流量数据,利用SUMO软件开展仿真实验,结果表明:相比优化前,低、中、高流量情况下公交车单车平均延误时间分别减少25.63%、25.25%、18.32%;同等条件下平均每周期非优先车辆延误时间分别减少8.80%、4.68%、1.99%;同等条件下平均每周期加权延误时间分别减少20.98%、9.39%、12.70%。证明所提方法能较好地适配交通需求,且流量较低时效果最好。Abstract: A connected-vehicle(CV)environment facilitates the collection of traffic data and the interactions among road users; therefore, it can contribute to more accurate evaluation of travel demand and traffic control. This paper investigates a signal control method at a single intersection for bus priority based on the weights for and delay distributions of bus and the other, non-priority vehicles. First, the arrival rates are calculated based on the trajectory data of connected buses and non-priority vehicles in the intersection, and the corresponding probability function of each phase is developed according to the distribution pattern of vehicle arrivals, based on which the probability of arrival rate is calculated using a maximum likelihood estimation model. Second, the wave speed of queuing, discharge, and departure are calculated respectively, using a traffic flow shock wave model. Third, the model specification for bus delay is carried out using the time-distance diagram of the shock-wave velocity, based on the fact that the number of buses in the traffic flow is less than regular vehicles while their weights are higher. Meanwhile, the model specification for non-priority vehicles is carried out using the Fixed Number Theory based on vehicles' arrival rate, considering the number of non-priority vehicles in traffic flow is larger while the weight of non-priority vehicle is lower, and most of them are not connected. The weighted delay of the intersection is calculated based on the number of passengers in vehicles. Finally, a mixed integer linear programming model is established to minimize the weighted delay, whose solution will then be used for optimizing signal control systems. To check the validity of the proposed method, a case study of the intersection of North Checheng Road and Dongfeng Avenue in the City of Wuhan is carried out. Traffic flow data of buses and non-priority vehicles at the intersection in different periods are collected, and an simulation experiment is accomplished based on Simulation of Urban Mobility(SUMO)Package. Experimental results show that the average delays for buses reduce by 25.63%, 25.25%, and 18.32%, under the scenario of low, medium, and high traffic flow rate, respectively. Compared with those before optimization, the average delays for non-priority vehicles in a single cycle under the same scenarios reduce by 8.80%, 4.68%, and 1.99%, respectively; and the average weighted delay in a single cycle under the same scenarios reduce by 20.98%, 9.39%, and 12.70%, respectively. The above results show that the proposed method is suitable and performs better in different traffic settings.
-
表 1 公交延误预测精度表
Table 1. Bus delay estimation accuracy chart
单位: s 交通流状况 延误差均值 最大延误差 延误差标准差 低流量 1.35 6.54 5.67 中流量 1.48 3.52 1.93 高流量 2.27 5.64 3.49 表 2 加权延误预测精度表
Table 2. Weighted delay estimation accuracy chart
组别 预计延误比 实测延误比 比值 1 1.13 1.19 0.95 2 2.07 2.24 0.92 3 1.24 1.31 0.94 4 1.37 1.18 1.16 5 3.69 3.87 0.95 6 4.62 4.45 1.04 表 3 仿真参数设置
Table 3. Simulation parameters
参数 取值或分布 网联公交通信距离/m 500 Krauss最小车头时距/s N(1.1, 0.2) Krauss静止安全距离/m N(1.5, 0.5) Krauss控制参数σ N(0.5, 0.2) 社会车辆长度/m 5 公交车长度/m 12 公交车静止安全距离/m 3 表 4 交通流量参数表
Table 4. Traffic flow parameters chart
交通流状况 组别 车辆类型 流量/(veh/h) 饱和度/% 西北 东南 西南 东北 合计 总流量 1 社会车 352 385 266 214 1 217 1 280 31.26 公交车 25 26 6 6 63 低流量 2 社会车 382 410 272 220 1 284 1 350 32.89 公交车 28 25 6 7 66 3 社会车 377 416 258 207 1 258 1 324 31.80 公交车 27 27 6 6 66 4 社会车 532 615 380 356 1 883 1 979 45.65 公交车 39 42 8 7 96 中流量 5 社会车 526 662 402 368 1 958 2 062 46.94 公交车 42 46 7 9 104 6 社会车 545 635 406 362 1 948 2 047 47.86 公交车 39 41 9 10 99 7 社会车 862 693 479 394 2 428 2 559 66.06 公交车 58 53 10 10 131 高流量 8 社会车 882 782 505 404 2 573 2 703 68.53 公交车 54 54 11 11 130 9 社会车 933 837 531 452 2 753 2 883 72.13 公交车 56 51 11 12 130 -
[1] ANDRE C, ANNE H, JOAN L W. Passengers'perception of and behavioral adaptation to unreliability in public transportation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013(1): 153-162. [2] 马万经, 杨晓光. 公交信号优先控制策略研究综述[J]. 城市交通, 2010, 8(6): 70-78+16. doi: 10.3969/j.issn.1672-5328.2010.06.012MA W J, YANG X G. A review of prioritizing signal strategies for bus services[J]. Urban Transport of China, 2010, 8 (6): 70-78+16. (in Chinese) doi: 10.3969/j.issn.1672-5328.2010.06.012 [3] 林永杰, 杨险峰, 邹难, 等. 城市交通干道上被动式公交信号优先控制[J]. 东北大学学报(自然科学版), 2013, 34(9): 1227-1231. doi: 10.3969/j.issn.1005-3026.2013.09.003LIN Y J, YANG X F, ZOU N, et al. New passive transit signal priority control strategy for the bus vehicles at urban arteries[J]. Journal of Northeastern University(Natural Science Edition), 2013, 34(9): 1227-1231. (in Chinese) doi: 10.3969/j.issn.1005-3026.2013.09.003 [4] 马万经, 杨晓光. 基于车道的单点交叉口公交被动优先控制模型[J]. 中国公路学报, 2010, 23(5): 96-101. doi: 10.3969/j.issn.1001-7372.2010.05.015MA W J, YANG X G. Lane-based optimization model of passive bus priority control for isolated intersection[J]. China Journal of Highway and Transport, 2010, 23(5): 96-101(in Chinese) doi: 10.3969/j.issn.1001-7372.2010.05.015 [5] 窦慧丽, 马万经, 王国华. 基于公交优先的单点交叉口车道信号协同配置模型[J]. 公路交通科技, 2019, 36(11): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201911010.htmDOU H L, MA W J, WANG G H. An integrated lane-marking and signal timing model for isolated intersection based on transit priority[J]. Journal of Highway and Transportation Research and Development, 2019, 36(11): 75-82(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201911010.htm [6] 马万经, 杨晓光. 单点公交优先感应控制策略效益分析与仿真验证[J]. 系统仿真学报, 2008, 20(12): 3309-3313. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200812062.htmMA W J, YANG X G. Efficiency analysis of transit signal priority strategies on isolated intersection[J]. Journal of System Simulation, 2008, 20(12): 3309-3313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200812062.htm [7] 李振龙, 王保菊, 金雪, 等. 综合考虑公交相位优先和非公交相位补偿的单点信号优化方法[J]. 科学技术与工程, 2015, 15(12): 109-113+117. doi: 10.3969/j.issn.1671-1815.2015.12.018LI Z L, WANG B J, JIN X, et al. A signal priority method considering bus phase priority and non-bus phase compensation at an intersection[J]. Science Technology and Engineering, 2015, 15(12): 109-113+117. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.12.018 [8] XU H, PENG L Q, SIKDER R, et al. Development and evaluation of adaptive transit signal priority control with updated transit delay model[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014(1): 45-54. (in Chinese) [9] 汪林. 基于预测的快速公交信号优先设计及效果仿真[J]. 公路交通科技, 2017, 34(6): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201706019.htmWANG L. Signal priority design for bus rapid transit based on prediction method and effect simulation[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 129-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201706019.htm [10] HE Q, HEAD K L, DING J, et al. Heuristic algorithm for priority traffic signal control[J]. Transportation Research Record: Journal of the Transportation Research Board, 2011(1): 1-7. [11] HE Q, HEAD K L, DING J. Multimodal traffic signal control with priority, signal actuation and coordination[J]. Transportation Research Part C: Emerging Technologies, 2014 (46): 65-82. [12] YE Z R, XU M T. Decision model for resolving conflicting transit signal priority requests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(1): 1-10. [13] 张鹏, 李文权, 常玉林, 等. 基于车速引导的交叉口公交优先多申请优化控制模型[J]. 中国公路学报, 2017, 30(9): 109-115. doi: 10.3969/j.issn.1001-7372.2017.09.014ZHANG P, LI W Q, CHANG Y L, et al. Optimal control model of multiple bus signal priority requests for isolated intersection based on speed guidance[J]. China Journal of Highway and Transport, 2017, 30(9): 109-115. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.09.014 [14] TRUONG L T, CURRIE G, WALLACE M, et al. Coordinated transit signal priority model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation, 2018, 20(4): 1269-1277. [15] 蔡雅苹, 王伟智. 基于公交优先的多路口车速引导控制方法[J]. 福州大学学报(自然科学版), 2019, 47(5): 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905023.htmCAI Y P, WANG W Z. Speed guidance control model at arterial based on the bus priority[J]. Journal of Fuzhou University(Natural Science Edition), 2019, 47(5): 700-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905023.htm [16] 强添纲, 刘涛, 裴玉龙, 等. 考虑绿灯延长的干线公交绿波优化控制模型[J]. 交通信息与安全, 2021, 39(2): 87-94. doi: 10.3963/j.jssn.1674-4861.2021.02.011QIANG T G, LIU T, PEI Y L, et al. A green wave optimization control model of trunk buses considering green extension[J]. Journal of Transport Information and Safety, 2021, 39(2): 87-94. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.011 [17] JIA H, PARK B B, PARKANY A E. Transit signal priority with connected vehicle technology[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014(1): 20-29. [18] 周莉, 暨育雄, 王一喆. 信息交互环境下公交信号优先控制仿真与评估[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(5): 816-820. doi: 10.3963/j.issn.2095-3844.2017.05.021ZHOU L, JI Y X, WANG Y Z. Simulation and evaluation of bus signal priority control in information interaction environment[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2017, 41(5): 816-820. (in Chinese) doi: 10.3963/j.issn.2095-3844.2017.05.021 [19] 柏海舰, 任桂香, 董瑞娟, 等. 网联环境下基于站点时刻表的公交信号优先方法[J]. 重庆交通大学学报(自然科学版), 2018, 37(7): 85-91. doi: 10.3969/j.issn.1674-0696.2018.07.15BAI H J, REN G X, DONG R J, et al. Transit signal priority method based on schedule under connected vehicle environment[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(7): 85-91. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.07.15 [20] 乔文鑫, 王锭. 基于交叉口可靠性的公交优先信号配时优化模型[J]. 交通运输系统工程与信息, 2017, 17(2): 54-59+67. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702009.htmQIAO W X, WANG D. A transit signal priority optimizing model based on reliability[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 54-59+67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702009.htm [21] 董志国, 吴冬升, 包颖. 智能网联公交的三大发展趋势[J]. 智能网联汽车, 2021(5): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWL202105023.htmDONG Z G, WU D S, BAO Y. Three development trends of intelligent networked public transport[J]. Intelligent Connected Vehicles, 2021(5): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWL202105023.htm [22] 《中国公路学报》编辑部. 中国交通工程学术研究综述· 2016[J]. 中国公路学报, 2016, 29(6): 1-161. doi: 10.3969/j.issn.1001-7372.2016.06.001Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.06.001 [23] 谈超鹏, 姚佳蓉, 唐克双. 基于抽样车辆轨迹数据的信号控制交叉口排队长度分布估计[J]. 中国公路学报, 2021, 34 (11): 282-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202111023.htmTAN C P, YAO J R, TANG K S. Queue length distribution estimation at signalized intersections based on sampled vehicle trajectory data[J]. China Journal of Highway and Transport, 2021, 34(11): 282-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202111023.htm [24] 王福建, 孙凌涛, 钱伟. 基于改进后冲击波剖面模型的宏观基本图特性研究[J]. 公路交通科技, 2016, 33(4): 127-133. doi: 10.3969/j.issn.1002-0268.2016.04.020WANG F J, SUN L T, QIAN W. Characteristics of macroscopic fundamental diagram based on SPM[J]. Journal of Highway and Transportation Research and Development, 2016, 33(4): 127-133. (in Chinese) doi: 10.3969/j.issn.1002-0268.2016.04.020 [25] CHENG Y, QIN X, JIN J, et al. An exploratory shockwave approach to estimating queue length using probe trajectories[J]. Journal of Intelligent Transportation Systems, 2012, 16(1): 12-23. [26] 慈玉生. 交通系统建模与仿真[M]. 北京: 人民交通出版社, 2020.CI Y S. Traffic system modelling and simulation[M]. Beijing: China Communications Press, 2020. (in Chinese) [27] 李桂瑞. 车联网环境下实时信息驱动的自适应交通管理研究[D]. 天津: 天津工业大学, 2020.LI G R. Research on real-time information driven adaptive traffic management in Internet of vehicles environment[D]. Tianjing: Tiangong University, 2020. (in Chinese)