Accessing the Impacts of Curb Parking Behavior on Traffic Flows Through Cellular Automata Models
-
摘要: 针对路侧停车带来的进出停车位排队延误、低速巡游降低通行效率、过量停车加剧交通负荷等问题,研究了路侧停车对路段动态交通流的影响分析方法。基于视频识别算法,提取路侧停车车辆在驶入车位过程中的运行轨迹和速度波动数据,解析路侧停车过程中的驶入行为特性,并按照行为差异将停车车辆停车全过程细分为进入路段、寻找车位、找到车位、驶入车位、静止停放、驶离车位、汇入路段和错失车位8类状态;分别依据停车车辆和通行车辆的实际驾驶行为,从跟驰特征、速度矫正、换道规则和位置更新等方面对路侧停车元胞自动机模型进行了改进;在选择目标车位时综合考虑了步行至目的地时间和驶入车位耗时2个要素。与常规通行车辆相比,深入分析了停车车辆提前换道和停车完后汇入路段行为对后车的影响。基于实际交通流数据对仿真模型进行参数标定,经验证,模型拟合度为77.6%;仿真分析了在差异化的停车需求强度下,巡游速度对道路通行能力和延误时间的影响规律。结果表明:固定的巡游速度和停车需求强度下,道路延误时间随道路交通量先增加后减少;在低停车需求强度下,巡游速度对道路通行能力影响微弱,在高停车需求强度下,当巡游速度从30 km/h降低至20 km/h,外侧车道饱和流量降低500 veh/h,最高延误时间增加105 s。Abstract: Curb parking may lead to several traffic issues, such as queue delay, slow traffic due to low-speed cruising, and reduced road capacity because of excessive parking spaces. In order to mitigate these issues, the impacts of curb parking on traffic flows are studied. Data of vehicle trajectory and speed is collected based on video recognition technique. Then, the characteristics of driving behaviors of the vehicles which use curb parking are analyzed. According to differences of driving behaviors, the process of curb parking is divided into eight steps: driving into the road, cruising for a parking space, finding a parking space, entering the space, parking, leaving the space, merging into traffic, and missing a parking space. Based on extracted data of parking and cruising behaviors of curb parking vehicles, a cellular automata model is proposed by taking multiple features into consideration, including their characteristics of car following, speed correcting, lane changing, and position updating. Time costs of both parking a vehicle and walking to destination are also considered for searching a target parking space. Compared with other vehicles, the impacts of behaviors of curb parking on the following vehicles, i.e., lane changing and lane merging, are analyzed. Besides, parameters of a simulation model are calibrated based on observed data of traffic flow, and the result shows that the degree of fit is 77.6%. Moreover, the influences of cruising speed on road capacity and delay time are analyzed by a simulation under differentiated parking intensities. The results show that delay time first increases, then decreases with the rise of traffic volume at a fixed cruising speed and parking intensity. At a low parking intensity, the impact of cruising speed on road capacity is small. In a scenario of high-volume traffic, when cruising speed declines from 30 km/h to 20 km/h, the saturation flow of outer lanes decreases by 500 veh/h, and the maximum delay time increases by 105 s.
-
表 1 车辆驶入单一空位时的关键点与时长
Table 1. Parking entry key points and usage time of only one space
车辆特征 正在换道 开始摆正 开始旋转 后退进入 静止停车 坐标 (-14,-4) (-2.5,-2.5) (10,-5) (2,-5) (0.5,-0.5) 时间/mm:ss 00:01 00:03 00:07 00:17 00:37 时间/s 未知 4 10 20 表 2 路侧停车车辆状态划分
Table 2. Curb parking vehicle status division
具体特征 序号 1 2 3 4 5 6 7 8 驾驶状态 进入路段 寻找车位 找到车位 驶入车位 静止停放 驶离车位 汇入车流 错失车位 速度特征 正常 低速 减速 静止 静止 加速 正常 正常 车辆位置 路段上游 停车路段 车位上游 车位内 车位内 车位内 车位下游 路段下游 表 3 仿真模型中的参数取值
Table 3. Model parameters of rules used in simulation
名称 值 名称 值 dec /(m/s2) 3 t0 /s 5 lmaxv/m 20 pmin 0.5 lmaxc/m 40 pmax 0.95 表 4 速度平均相对误差
Table 4. Mean relative error of speed
实际数据 仿真数据 相对误差/% 流量(/veh/h) 速度(/km/h) 流量(/veh/h) 速度(/km/h) 96 39 96 37.9 2.82 172 40 172 37.7 5.75 260 36.5 260 37.3 2.19 440 39.4 440 36.1 8.38 288 36.7 288 37.1 1.09 476 38.5 476 35.9 6.75 600 35.6 600 35.5 0.28 520 36.3 520 35.8 1.38 700 33.4 700 34.9 4.49 880 28 880 32.7 16.79 800 30.1 800 33.7 11.96 1 160 23.2 1 160 25 7.76 拟合度 77.6% -
[1] SHOUP D C. The high cost of free parking[J]. University of California Transportation Center Working Paper, 2004, 17 (1): 3-20. [2] SHOUP D C. Cruising for parking[J]. Transport Policy, 2012, 13(6): 479-486. [3] CHIARA G D, GOODCHILD A. Do commercial vehicles cruise for parking? Empirical evidence from Seattle[J]. Transport Policy, 2020(97): 26-36. [4] 高利平, 孙全欣, 刘明君, 等. 基于路边停车的机非混行延误模型与仿真研究[J]. 系统仿真学报, 2010, 22(3): 804-808. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201003058.htmGAO L P, SUN Q X, LIU M J, et al. Delay models and simulation on mixed traffic with curb parking[J]. Journal of System Simulation, 2010, 22(3): 804-808. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201003058.htm [5] 郭宏伟. 城市路内停车影响的建模与特性分析[D]. 北京: 北京交通大学, 2011.GUO H W. Modeling and properties analyzing of the influence of urban on-street parking[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese) [6] 刘小明, 王力. 考虑路内停车的元胞自动机交通流模型[J]. 吉林大学学报(工学版), 2012, 42(2): 327-333. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201202013.htmLIU X M, WANG L. Cellular automaton traffic flow model considering on-street parking[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(2): 327-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201202013.htm [7] 张月, 孔德文, 孙立山, 等. 路侧停车行为对车流行程时间的影响[J]. 交通信息与安全, 2019, 37(5): 107-115. doi: 10.3963/j.issn.1674-4861.2019.05.014ZHANG Y, KONG D W, SUN L S, et al. The influence of on-street parking behavior on traffic flow travel time[J]. Journal of Transport Information and Safety, 2019, 37(5): 107-115. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.05.014 [8] CHEN J, LI Z, JIANG H, et al. Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation[J]. Physica A: Statistical Mechanics and its Applications, 2017(468): 880-891. [9] 魏家蓉. 路内停车行为对道路交通流影响的仿真建模研究[D]. 北京: 北京交通大学, 2018.WEI J R. Simulation model on traffic impact of curb parking[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese) [10] 帅文磊. 路内停车对次干路交通流运行特性的影响研究[D]. 福州: 福建农林大学, 2020.SHI W L. On-street parking to secondary arterial traffic flow study on the influence of operating charateristics[D]. Fuzhou: Fujian Agriculture and Forestry University. (in Chinese) [11] KRZYSZTOF M. A computer simulation of traffic flow with on-street parking and drivers'behaviour based on cellular automata and a multi-agent system[J]. Journal of Computational Science, 2018(28): 32-42. [12] 裴玉龙, 杨远帆. 双向两车道路内停车影响下的阻滞延误模型[J]. 城市交通, 2020, 18(3): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202003021.htmPEI Y L, YANG Y F. Block delay model under the influence of on-street parking in two-way two-lane road[J]. Urban Transport of China, 2020, 18(3): 119-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT202003021.htm [13] 邵长桥, 杨乔乔. 路侧停车行为对基本路段通行能力的影响分析[J]. 重庆交通大学学报(自然科学版), 2018, 37(1): 80-84. doi: 10.3969/j.issn.1674-0696.2018.01.13SHAO C Q, YANG Q Q. Influence of curb parking behavior on traffic capacity of basic road section[J]. Journal of Chongqing JiaoTong university(natural science), 2018, 37 (1): 80-84. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.01.13 [14] 战宇轩. 路内停车对城市道路网络通行能力的影响研究[D]. 北京: 北方工业大学, 2020.ZHAN Y X. Research on the influence of on-street parking on the road networks capacity[D]. Beijing: North China University of Technology, 2020. (in Chinese) [15] BOYLES S D, TANG S, UNNIKRISHAN A. Parking search equilibrium on a network[J]. Transportation Research Part B: Methodological, 2015, 81(2): 390-409. [16] CAO J, MENENDEZ M. System dynamics of urban traffic based on its parking related states[J]. Transportation Research Part B: Methodological, 2015, 81(3): 718-736. [17] GEROLIMINIS N. Cruising-for-parking in congested cities with an MFD representation[J]. Economics of Transportation, 2015, 4(3): 156-165. doi: 10.1016/j.ecotra.2015.04.001 [18] ARNOTT R, WILLIAMS P. Cruising for parking around a circle[J]. Transportation Research Part B: Methodological, 2017, 104(10): 357-375. [19] LECLERCQ L, SENECAT A, MARIOTTE G. Dynamic macroscopic simulation of on-street parking search: A trip-based approach[J]. Transportation Research Part B: Methodological, 2017, 101(7): 268-282. [20] MILLARD B A, HAMPSHIRE R C, WEINBERGER R. Parking behaviour: The curious lack of cruising for parking in San Francisco[J]. Land Use Policy, 2020(91): 103918. [21] JIANG R, WU Q S. Cellular automata models for synchronized traffic flow[J]. Journal of Physics A: Mathematical and General, 2002(36): 381-390. [22] 贾斌, 高自友, 李克平, 等. 基于元胞自动机的交通系统建模与模拟[M]. 北京: 科学出版社, 2007.JIA B, GAO Z Y, LI K P, et al. Models and simulations of traffic system based on the theory of cellular automaton[M]. Beijing: Science Press, 2007. (in Chinese)