留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于XGBoost的短时出租车速度预测模型

肖宇 赵建有 叱干都 刘清云

肖宇, 赵建有, 叱干都, 刘清云. 基于XGBoost的短时出租车速度预测模型[J]. 交通信息与安全, 2022, 40(3): 163-170. doi: 10.3963/j.jssn.1674-4861.2022.03.017
引用本文: 肖宇, 赵建有, 叱干都, 刘清云. 基于XGBoost的短时出租车速度预测模型[J]. 交通信息与安全, 2022, 40(3): 163-170. doi: 10.3963/j.jssn.1674-4861.2022.03.017
XIAO Yu, ZHAO Jianyou, CHIGAN Du, LIU Qingyun. A Short-term Prediction Model for Taxi Speed Based on XGBoost[J]. Journal of Transport Information and Safety, 2022, 40(3): 163-170. doi: 10.3963/j.jssn.1674-4861.2022.03.017
Citation: XIAO Yu, ZHAO Jianyou, CHIGAN Du, LIU Qingyun. A Short-term Prediction Model for Taxi Speed Based on XGBoost[J]. Journal of Transport Information and Safety, 2022, 40(3): 163-170. doi: 10.3963/j.jssn.1674-4861.2022.03.017

基于XGBoost的短时出租车速度预测模型

doi: 10.3963/j.jssn.1674-4861.2022.03.017
基金项目: 

国家重点研发计划项目 2020YFB1600400

详细信息
    作者简介:

    肖宇(1998—),硕士研究生. 研究方向:交通运输规划与管理. E-mail:13028563168@163.com

    通讯作者:

    赵建有(1963—),博士,教授. 研究方向:交通运输规划与管理、交通安全等. E-mail:jyzhao@chd.edu.cn

  • 中图分类号: U491.1+4

A Short-term Prediction Model for Taxi Speed Based on XGBoost

  • 摘要: 准确预测短时出租车速度是识别驾驶员异常加减速行为的前提,有助于提升乘客的安全与舒适。以城市中出租车实时移动速度为研究对象,研究了基于XGBoost的短时出租车速度预测模型。将出租车的移动速度数据集划分为训练集和测试集,构造滑动时间窗口,以时间窗口内的出租车历史移动速度的时间序列为输入变量,以出租车当前时间的移动速度为输出变量,采用前向验证的方法进行模型评估。利用基于贝叶斯算法的hyperopt模块实现模型参数的快速优化,得到模型最优参数组合,并基于深圳市2013年10月22日的出租车GPS轨迹数据集进行算例分析,将模型的预测结果与非参数回归模型、神经网络模型预测结果进行比较。研究表明:所构建的短时出租车速度预测模型的平均绝对误差(MAE)为9.841,均方根误差(RMSE)为12.711,均低于非参数回归模型和神经网络模型,提高了出租车速度的预测精度;由于出租车速度序列缺乏规律性,调整后的R2R2 _adjusted)为0.592,且相较于其他2个模型,XGBoost模型在出租车速度发生急剧变化的时间点附近具有更优的拟合效果,避免了过拟合造成的预测精度下降。

     

  • 图  1  时间窗口示意图

    Figure  1.  Time window diagram

    图  2  某出租车运行轨迹

    Figure  2.  Trajectory of a taxi

    图  3  非参数回归模型预测结果

    Figure  3.  Nonparametric regression model prediction results

    图  4  神经网络模型预测结果

    Figure  4.  Neural network model prediction results

    图  5  XGBoost模型预测结果

    Figure  5.  XGBoost model prediction results

    图  6  该出租车20个时间点预测结果

    Figure  6.  Prediction results of the taxi at 20 time points

    表  1  XGBoost模型参数设置

    Table  1.   XGBoost model parameter settings

    参数名 取值 参数名 取值
    提升器 GBtree Gamma 0.05
    学习率 0.05 列占比 0.6
    迭代次数 1 000 子采样 0.6
    树的最大深度 6 最小叶子节点权重和 3
    下载: 导出CSV

    表  2  模型预测性能评价

    Table  2.   Model prediction performance evaluation

    选用模型 MAE RMSE R2_adjusted
    非参数回归模型 13.660 20.279 0.595
    神经网络模型 13.817 18.347 0.504
    XGBoost模型 9.841 12.711 0.592
    下载: 导出CSV
  • [1] 王萍, 万蔚, 张克, 等. 出租车驾驶员生态驾驶行为评价[J]. 交通工程, 2018, 18(6): 41-44+50. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201806007.htm

    WANG P, WAN W, ZHANG K, et al. Taxi driver ecological driving behavior evaluation[J]. Journal of Transportation Engineering, 2018, 18(6): 41-44+50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201806007.htm
    [2] 任慧君, 许涛, 李响. 利用车载GPS轨迹数据实现公交车驾驶安全性分析[J]. 武汉大学学报(信息科学版), 2014, 39 (6): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201406021.htm

    REN H J, XU T, LI X. Driving behavior analysis based on trajectory data collected with vehicle-mounted GPS receivers[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 739-744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201406021.htm
    [3] 惠飞, 郭静, 贾硕, 等. 基于双向长短记忆网络的异常驾驶行为检测[J]. 计算机工程与应用, 2020, 56(24): 116-122. doi: 10.3778/j.issn.1002-8331.2006-0079

    HUI F, GUO J, JIA S, et al. Detection of abnormal driving behavior based on BiLSTM[J]. Computer Engineering and Applications, 2020, 56(24): 116-122. (in Chinese) doi: 10.3778/j.issn.1002-8331.2006-0079
    [4] 赵建东, 陈溱, 焦彦利, 等. 重点营运车辆的异常驾驶行为识别研究[J]. 交通运输系统工程与信息, 2022, 22(1): 282-291. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202201030.htm

    ZHAO J D, CHEN Q, JIAO Y L, et al. Recognition of abnormal driving behavior of key commercial vehicle[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 282-291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202201030.htm
    [5] 王进, 史其信. 短时交通流预测模型综述[J]. 中国公共安全(学术卷), 2005(1): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-GGAQ200501016.htm

    WANG J, SHI Q X. Summary of short-term traffic flow prediction models[J]. China Public Safety(Academic Volume), 2005(1): 92-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGAQ200501016.htm
    [6] SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(4): 303-321. doi: 10.1016/S0968-090X(02)00009-8
    [7] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction[J]. A Genetic Approach, 2005, 13(3), 211-234.
    [8] ZHANG H, WANG X M, CAO J, et al. A hybrid short-term traffic flow forecasting model based on time series multifractal characteristics[J]. Applied Intelligence, 2018, 48(8): 2429-2440. doi: 10.1007/s10489-017-1095-9
    [9] 李振龙, 张利国, 钱海峰. 基于非参数回归的短时交通流预测研究综述[J]. 交通运输工程与信息学报, 2008, 6(4): 34-39. doi: 10.3969/j.issn.1672-4747.2008.04.007

    LI Z L, ZHANG L G, QIAN H F. Review of the short-term traffic flow forecasting based on non-parametric regression[J]. Journal of Transportation Engineering and Information, 2008, 6(4): 34-39. (in Chinese) doi: 10.3969/j.issn.1672-4747.2008.04.007
    [10] 罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm

    LUO W H, DONG B T, WANG Z S. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Transportation System Engineering and Information, 2017, 17(5): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm
    [11] 冯微, 陈红, 张兆津, 等. 基于GBRBM-DBN模型的短时交通流预测方法[J]. 交通信息与安全, 2018, 36(5): 99-108. doi: 10.3963/j.issn.1674-4861.2018.05.013

    FENG W, CHEN H, ZHANG Z J, et al. A forecast of short-term traffic flow based on GBRBM-DBN model[J]. Journal of Transport Information and Safety, 2018, 36(5): 99-108. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.05.013
    [12] SHI F, WANG Y, CHEN J, et al. Short-term vehicle speed prediction by time series neural network in high altitude areas[C]. 5th International Conference on Civil and Hydraulic Engineering, Nanjing, China: Hohai University, 2019.
    [13] YEON K, MIN K, SHIN J, et al. Ego-vehicle speed prediction using a long short-term memory based recurrent neural network[J]. International Journal of Automotive Technology, 2019, 20(4): 713-722. doi: 10.1007/s12239-019-0067-y
    [14] LADAN M, AHMAD M, NASSER L A. Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads[J]. Engineering Science and Technology, an International Journal, 2015, 18(2): 150-162. doi: 10.1016/j.jestch.2014.11.002
    [15] 冯安琪, 钱丽萍, 黄玉蘋, 等. RFID环境下基于自适应卡尔曼滤波的高速移动车辆速度预测[J]. 计算机科学, 2019, 46 (4): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201904016.htm

    FENG A Q, QIAN L P, HUANG Y P, et al. RFID data-driven vehicle speed prediction using adaptive Kalman filter[J]. Computer Science, 2019, 46(4): 100-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201904016.htm
    [16] 郭兴, 马彬, 杨朝红, 等. 考虑驾驶行为预判的改进ARIMA车速短期预测方法[J]. 重庆理工大学学报(自然科学), 2022, 36(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202201006.htm

    GUO X, MA B, YANG C H, et al. An improved ARIMA speed short-term prediction method driving behavior prediction[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(1): 51-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202201006.htm
    [17] 连静, 刘爽, 李琳辉, 等. 插电式混合动力汽车车速预测及整车控制策略[J]. 控制理论与应用, 2017, 34(5): 564-574. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201705002.htm

    LIAN J, LIU S, LI L H, et al. Plug-in hybrid electric vehicle speed prediction and control strategy[J]. Control Theory and Application, 2017, 34(5): 564-574. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201705002.htm
    [18] CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA: Association for Computing Machinery, 2016.
    [19] 钟颖, 邵毅明, 吴文文, 等. 基于XGBoost的短时交通流预测模型[J]. 科学技术与工程, 2019, 19(30): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201930052.htm

    ZHONG Y, SHAO Y M, WU W W, et al. Short-term traffic flow prediction model based on XGBoost[J]. Science Technology and Engineering, 2019, 19(30): 337-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201930052.htm
    [20] 叶景, 李丽娟, 唐臻旭. 基于CNN-XGBoost的短时交通流预测[J]. 计算机工程与设计, 2020, 41(4): 1080-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202004030.htm

    YE J, LI L J, TANG Z X. Short-term traffic flow forecasting based on CNN-XGBoost[J]. Computer Engineering and Design, 2020, 41(4): 1080-1086. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202004030.htm
    [21] 宋瑞蓉, 路树华, 王斌君, 等. 基于ABiLSTM与XGBoost组合模型的交通时间预测[J]. 软件导刊, 2021, 20(8): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202108005.htm

    SONG R R, LU S H, WANG B J, et al. Traffic time prediction based on ABiLSTM and XGBoost combination model[J]. Software Guide, 2021, 20(8): 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202108005.htm
    [22] 梁泉, 翁剑成, 胡娟娟, 等. 融合XGBoost和图谱修正的公交通勤乘客目的地预测方法[J]. 交通信息与安全, 2021, 39 (4): 68-76. doi: 10.3963/j.jssn.1674-4861.2021.04.009

    LIANG Q, WENG J C, HU J J, et al. Travel destination prediction of public transport commuters by integrating XGBoost algorithm and graph adjustment method[J]. Journal of Transport Information and Safety, 2021, 39(4): 68-76. doi: 10.3963/j.jssn.1674-4861.2021.04.009
    [23] ZHANG D S, ZHAO J J, ZHANG F, et al. UrbanCPS: A cyber-physical system based on multi-source big infrastructure data for heterogeneous model integration[C]. 6th International Conference on Cyber-Physical Systems, New York, USA: ACM, 2015.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  977
  • HTML全文浏览量:  376
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回