An Optimization Method and Evaluation Model for Designing Speed Control Zones of Freeway
-
摘要: 为解决限制速度值确定不合理、限速方式不适用以及限速区间长度设置不恰当等问题, 对驾驶人行驶体验以及限速管理可信度的负面影响, 优化了高速公路限速区间最小长度、限制速度值、限速区间划分的确定方法, 进而提出了以安全车速与通行效率为依据的高速公路限速区间优化与评价模型。依据驾驶人视认距离、限速标志设置前置距离和驾驶人心理稳定距离, 标定计算模型中的限速区间最小长度。以行驶速度是否易发生突变为标准, 采用不定长法将不同路段划分为6种组合类型, 建立基于不同组合路段的限速预测模型。采用有序聚类分析法中基于划分和层次的分析方法, 以满足限速区间最小长度和交通延误最小2个方面为目标进行优化限速区间的划分。同时, 选取交通冲突率作为表征交通安全的指标, 选取交通延误时间作为表征交通效率的指标, 建立评价指标模型; 最后通过对比分析优化前后的指标来验证限速区间优化方法的有效性。以某山区高速公路为对象应用VISSIM开展限速优化仿真实验, 结果表明: 优化后安全评价模型参数值比原方案降低了约29.49%, 效率评价模型参数值比原方案提高了约21.90%, 优化后的高速公路整体安全性以及通行效率均得到提高。所提出的高速公路限速区间确定方法以速度突变为基准, 结合路段的属性及指标特点, 能够优化限速区间长度的制定和区间的划分。Abstract: The problems such as unreasonable determination of the speed limit, invalid rate-limiting way, and improper setting of speed limit range can impact the road safety. These problems can impact driving experience and the credibility of speed limit management. A model is developed based on safe speed and traffic efficiency. Then, the minimum length of speed limit zone, the limit of vehicle speed, and the division of speed limit zone are optimized. On this basis, an evaluation model of speed limit zone of freeway is optimized. The minimum length of the speed limit zone is calibrated according to the driver's vision recognition distance, the pre-setting distance of speed limit sign, and the driver's psychological stability distance. These limitations include the drivers' visual distance, the pre-setting distance of speed limit sign, and the drivers' psychologically stable distance. Then, according to whether the speed is prone to sudden change, a road segment is divided into six different types of combination by the method of variable length. On this basis, the speed limit prediction models of different combination roads are determined. The method based on partition and hierarchy in cluster analysis is used to optimize the partition of speed limit zone from two aspects. The minimum length of speed limit zone and the minimum traffic delay are optimized.At the same time, the traffic conflict rate is chosen as the index of traffic safety. And the traffic delay time is chosen as the index of traffic efficiency. The evaluation index model is established. Then, the validity of the method is verified by the comparison and analysis of the indexes before and after optimization. The simulation experiment of speed limit optimization is carried out on a mountain freeway with VISSIM. The results show that the parameters of the optimized safety evaluation model is reduced by about 29.49%. The parameters of the efficiency evaluation model is increased by about 21.90%. Moreover, the safety and overall traffic efficiency of the optimized freeway are improved. The speed limit zone determination method in this paper is based on the sudden change of the vehicle speed.This method combines the attribute and index characteristics of freeway sections. The proposed optimization method can significantly optimize the length of speed limit zone and the division of the zone.
-
Key words:
- traffic safety /
- freeway /
- limit of vehicle speed /
- cluster analysis /
- speed limit zone
-
表 1 不同限制速度下标志视认距离
Table 1. Sign recognition distance at different speed limits
限制速度V限/(km/h) 汉字高度/cm 视认距离/m ≥ 120 60 171.90 ≥ 100~120 50 143.25 ≥ 80~100 40 114.60 ≥ 60~80 30 85.95 ≥ 40~60 20 57.30 <40 10 28.65 表 2 警告标志前置距离一般值
Table 2. The general value of the front distance of the warning sign
单位: m 当前区段限制速度/(km/h) 前1个区段限制速度/(km/h) 40 50 60 70 80 90 100 110 120 0 * * 30 50 80 110 130 170 200 10 * * * 40 60 90 120 160 190 20 * * * 30 55 80 115 150 185 30 * * * * 50 70 110 140 180 40 * * * 40 60 100 130 170 50 * 30 40 90 120 160 60 * * * 70 110 140 70 * * 60 90 130 80 * 40 70 110 90 * 50 90 100 * 60 110 40 附注:*不提供具体建议值,视当地具体条件确定。 表 3 限速区间最小长度
Table 3. Speed limit section minimum length
限制速度/(km/h) 驾驶人心理稳定距离/m 限速区间最小长度/m 60 666.67 800 70 777.78 900 80 888.89 1 100 90 1 800 2 000 100 2 000 2 200 110 4 400 4 600 120 4 800 5 000 表 4 隧道路段运行速度预测模型
Table 4. Prediction model of running speed of tunnel section
车型 特征点 计算模型 小型车 隧道洞口 v1 = 0.99vin - 11.07 隧道内 v2 = 0.81vin + 8.22 驶出隧道洞口后100 m v3 = 0.74vin + 16.43 大型车 隧道洞口 v1 = 0.98vin - 6.56 隧道内 v2 = 0.85vin + 3.89 驶出隧道洞口后100 m v3 = 0.45vin + 42.61 附注:vin为距离入隧道洞口200 m衔接路段单元的速度(km/h);除短隧道(隧道长度≤ 500 m)外,其他隧道均按照上述模型计算。 表 5 分析指标选取
Table 5. Analysis index selection
分析指标 选取结果 备注 安全指标 交通事故率 剔除 获取较难,成因复杂 交通冲突率 保留 速度离散性 保留 车头间距与车头时距 剔除 适用于跟驰状态交通流 效率指标 交通延误 保留 行驶时间 剔除 较难表征通行效率的高低 通行能力 剔除 影响因素较多 饱和度 剔除 受限速影响程度有限 表 6 设计指标参数
Table 6. Design index parameters
指标 参数 备注 设计标准 双向4车道 设计速度/(km/h) 80 路线长度/km 123 最小平曲线半径/m 420 规范中圆曲线最小半径一般值400 m 最大纵坡/% 4 纵坡大于3%共8处,较为集中 连续长下坡平均坡度/% 2.8,2.6 存在2处连续长下坡,共计16 km 表 7 限速统计表(部分)
Table 7. Speed limit statistics table (part)
限速起点桩号 限速终点桩号 区间长度/km 限速标志/(km/h) K341+950 K343+120 1.17 120 K343+120 K344+250 1.13 100 K344+250 K345+100 1.85 80 K345+100 K352+800 6.7 120 K352+800 K353+940 1.14 80 K353+940 K354+900 0.96 60 K354+900 K356+500 1.6 120 K356+500 K357+780 1.28 100 K357+780 K358+200 0.44 80 K358+200 K368+000 9.8 120 K368+000 K369+170 1.17 60 ⋮ ⋮ ⋮ ⋮ K459+280 K460+900 1.62 100 K460+900 K461+920 1.02 80 K461+920 K464+000 2.08 120 表 8 优化后的限速区间
Table 8. Optimized speed limit section
限速起点桩号 限速终点桩号 区间长度/km 限制速度/(km/h) 备注 K341+500 K349+200 7.7 120 K349+200 K356+880 7.68 100 短隧道、立交 K356+880 K369+400 12.52 120 K369+400 K373+300 3.9 100 立交、弯坡路段 K373+300 K377+500 4.2 80 弯坡路段、中隧道 K377+500 K381+750 6.25 90 短隧道、立交 K381+750 K391+800 9.05 80 连续小半径曲线接连续下坡 K391+800 K400+400 8.6 100 立交、短隧道、纵坡路段 K400+400 K435+600 35.2 120 K435+600 K441+800 6.2 100 短隧道、纵坡路段 K441+800 K452+000 10.2 80 中隧道、连续下坡 K452+000 K458+000 6.0 100 中隧道、短隧道 K458+000 K464+000 6.0 120 表 9 仿真车辆参数
Table 9. Simulation vehicle parameters
类型 总长/m 总宽/m 轴距/m 期望速度/(km/h) 最大减速度/(m/s2) 最大加速度/(m/s2) 小客车 6 1.8 3.8 80~120 6 2 大货车 12 2.5 6.5 80 5.5 1 表 10 实测小时交通量统计
Table 10. Measured hourly traffic volume statistics
单位: 辆/h 桩号 大货车 小客车 总计 K355+600 26 126 152 K393+500 32 98 130 K410+350 24 192 216 K420+350 24 24 54 K423+850 14 62 76 K448+400 24 196 220 K459+900 16 218 234 表 11 限速方案对比
Table 11. Speed limit plan comparison
方案 行程时间/s 交通延误/s 平均速度/(km/h) 相对速度差/(km/h) 交通冲突数/起 换道冲突数 追尾冲突数 原限速方案 4 680.5 18.9 93.3 0.242 20 84 优化后限速方案 4 631.5 16.4 97.3 0.195 21 70 -
[1] 徐婷. 公路限速区划分与限速梯级过渡段设置研究[D]. 北京: 北京工业大学, 2011.XU T. Speed zone division and speed transition zone setting research[D]. Beijing: Beijing University of Technology, 2011. (in Chinese) [2] 李瑞, 马荣国, 梁国华, 等. 高速公路限速区段安全与效率优化协调模型[J]. 哈尔滨工业大学学报, 2019, 51(3): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201903023.htmLI R, MA G R, LIANG G H, et al. Optimization and coordination model for speed limit section in freeway[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 158-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201903023.htm [3] 季托, 周颖, 吕能超. 多车道高速公路分流交织区交通流特性与交通组织策略[J]. 交通信息与安全, 2021, 39(2): 126-136+152. doi: 10.3963/j.jssn.1674-4861.2021.02.016JI T, ZHOU Y, LV N C. Traffic flow characteristics and traffic organization strategy in a diversion and interleaving area of multi-lane freeways[J]. Journal of Transport Information and Safety, 2021, 39(2): 126-136+152. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.016 [4] Federal Highway Administration. Manual on uniform traffic contronl devices 2003[S]. Washington D. C. : National Committee on Uniform Traffic Control Devices, 2003. [5] RIBBENS H. Guidelines for setting speed limits[R]. South Africa: National Institute for Transport and road Research, 1986. [6] ZHANG L, ZHANG L, HALE D K, et al. Cycle-based variable speed limit methodology for improved freeway merging[J]. IET Intelligent Transport Systems, 2017, 11(10): 632-640. doi: 10.1049/iet-its.2017.0017 [7] PAPAMICHAIL I, PAPAGEORGIOU M, STAMATAKI I. Feedback traffic control at highway work zones using variable speed limits[J]. IFAC-PapersOnLine, 2018, 51(9): 329-336. doi: 10.1016/j.ifacol.2018.07.054 [8] 于德新, 刘珩, 郑黎黎, 等. 高速公路瓶颈区域可变限速控制方法[J]. 交通运输系统工程与信息, 2018, 18(3): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803019.htmYU D X, LIU H, ZHENG L L, et, al. Variable speed limit control method for freeway bottleneck area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 120-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803019.htm [9] 林莉. 多车道高速公路速度限制值确定方法研究[D]. 南京: 东南大学, 2018.LIN L. Research on determination method of speed limits of multilane freeway[D]. Nanjing: Southeast University, 2018. (in Chinese) [10] QIAN G B, LEE J. An analysis of threshold criteria and conditions for variable speed limit deactivation[J]. KSCE Journal of Civil Engineering, 2019, 23(4): 1786-1796. doi: 10.1007/s12205-019-0261-5 [11] 柳本民, 闫寒. 基于SVM事故分类的连环追尾事故影响因素分析[J]. 交通信息与安全, 2020, 38(1): 43-51. doi: 10.3963/j.jssn.6174-4861.2020.01.006LIU B M, YAN H. An analysis of influencing factors of multi-vehicle rear-end accidents based on accident classification of SVM[J]. Journal of Transport Information and Safety, 2020, 38(1): 43-51. (in Chinese) doi: 10.3963/j.jssn.6174-4861.2020.01.006 [12] LEE Y M, CHONG S Y, GOONTING K, et al. The effect of speed limit credibility on drivers'speed choice[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 45: 43-53. doi: 10.1016/j.trf.2016.11.011 [13] 张驰, 贺亚龙, 黄星, 等. 雾天不同能见度条件下高速公路限速建议值研究[J]. 交通信息与安全, 2018, 36(5): 25-33. doi: 10.3963/j.issn.1674-4861.2018.05.004ZHANG C, HE Y L, HUANG X, et al. A study on speed limit of expressways under different visibility on foggy weather[J]. Journal of Transport Information and Safety, 2018, 36(5): 25-33. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.05.004 [14] 马艳丽. 驾驶人驾驶特性与道路交通安全对策研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.MA Y L. Study on characteristics of driving and its countermeasures to road safety[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese) [15] 戴权, 王芳, 倪安宁. 认知过程中交通标志视认有效性影响因素分析[J]. 中国安全科学学报, 2009, 19(12): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200912008.htmDAI Q, WANG F, NI A N. Influence factors of traffic sign comprehension effectiveness in cognitive process[J]. China safety science journal, 2009, 19(12): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200912008.htm [16] 张瑾. 道路交通标志标线警示能力研究[D]. 昆明: 昆明理工大学, 2005.ZHANG J. Research on warn ability of the road traffic sign and marking[D]. Kunming: Kunming University of Science and Technology, 2005. (in Chinese) [17] 中华人民共和国交通部. 公路项目安全性评价规范: JTG B05—2015[S]. 北京: 人民交通出版社, 2015.Ministry of Transport of the People's Republic of China. Specifications for highway safety audit: JTG B05—2015[S]. Beijing: China Communications Press, 2006. (in Chinese) [18] 国家标准化管理委员会. 道路交通标志和标线第2部分: 道路交通标志: GB 5768.5—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Road traffic signs and markings-Part 2: Road traffic signs: GB 5768.5—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese) [19] 交通部公路安全保障工程技术组. 公路安全保障工程实施技术指南[M]. 北京: 人民交通出版社, 2007.Technical Group of Highway Safety Enhancement Project. Ministry of Communications, Guideline for implementation of highway safety enhancement project[M]. Beijing: Standards Press of China, 2007. (in Chinese) [20] 陈敏. 公路限速值控制探析[J]. 科技与创新, 2015(20): 38-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX201520026.htmCHEN M. Analysis on control of highway speed limit value[J]. Science and Technology & Innovation, 2015(20): 38-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX201520026.htm [21] 贺玉龙, 孙小端. 公路速度限制与速度控制技术[M]. 北京: 人民交通出版社, 2011.HE Y L, SUN X D. Highway speed limit and speed control technology[M]. Beijing: People's Transportation Publishing House, 2011. (in Chinese) [22] 方超, 袁方, 宗卫锋, 等. 双车道公路长直线接小半径曲线路段限速研究[J]. 公路工程, 2018, 43(4): 160-164+179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201804031.htmFANG C, YUAN F, ZONG W F, et al. Research on speed limit of long straight line combined with sharp curve of dual lane highway[J]. Highway Engineering, 2018, 43(4): 160-164+179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201804031.htm [23] 国家标准化管理委员会. 道路交通标志和标线第5部分: 限制速度: GB 5768.5—2017[S]. 北京: 中国标准出版社, 2017.Standardization Administration of the People's Republic of China. Road traffic signs and markings-Part 5: Speed limit: GB 5768.5—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese) [24] 张驰, 任士鹏, 王博等. 长大下坡路段货车运行速度特性及预测[J]. 华南理工大学学报(自然科学版), 2022, 50(3): 38-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202203005.htmZHANG C, REN S P, WANG B, et al. Speed characteristics and prediction of trucks on long and steep downgrade sections[J]. Journal of South China University of Technology(Nature Science Edition), 2022, 50(3): 38-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202203005.htm [25] 高伟. 山区高速公路长下坡隧道群限速问题研究[D]. 重庆: 重庆交通大学, 2017.GAO W. Study on the speed limit of long steep downgrades and freeway tunnels[D]. Chongqing: Chongqing Jiaotong University, 2017. (in Chinese) [26] 中华人民共和国交通部. 公路路线设计规范: JTG D20—2017[S]. 北京: 人民交通出版社, 2017.Ministry of Transport of the People's Republic of China. Design specification for highway alignment: JTG D20—2017[S]. Beijing: China Communications Press, 2017. (in Chinese) [27] 中华人民共和国交通部. 公路隧道设计规范第一册土建工程: JTG 3370.1—2018[S]. 北京: 人民交通出版社, 2018.Ministry of Transport of the People's Republic of China. Specifications for design of highway tunnels Section 1 Civil engineering: JTG 3370.1—2018[S]. Beijing: China Communications Press, 2018. (in Chinese) [28] 曲大义, 郝亮, 陈秀锋, 等. 车流速度离散对运行安全的影响研究[J]. 青岛理工大学学报, 2013, 33(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201206003.htmQU D Y, HAO L, CHEN X F, et al. Speed difference influence on safety of vehicle in motion[J]. Journal of Qingdao University of Technology, 2012, 33(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201206003.htm [29] 中华人民共和国交通部. 公路限速标志设计规范: JTG/T3381—02—2020[S]. 北京: 人民交通出版社, 2020.Ministry of Transport of the People's Republic of China. Design Specification for Highway Speed Limit Signs: JTG/T3381—02—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)