A Method for Planning of Parking-facility Locations Using Internet Mobility Data
-
摘要: 为解决不确定需求下的停车设施选址问题,提出了基于互联网出行数据的停车设施选址规划方法。该方法基于居民通勤数据估计停车需求、识别备选停车设施点,并以停车设施的建设维护成本、停车设施到停车需求点的步行距离最小化为目标,构建不确定需求下的停车设施选址优化模型。为验证模型的可行性,基于北京市2021年9月—11月的居民通勤数据,针对海淀区中关村附近区域,构建并求解模型,并对建设维护总成本变化与停车需求不确定性之间的关系进行研究。研究结果表明:停车设施点的最优配置数量及其车位规模会随着停车需求被满足的置信水平(即实际停车需求小于或等于停车设施容量的概率)的提高而增加,且当置信水平达到0.9时,建设维护总成本变化显著提高,此时停车设施点的数量为30个,停车位总数为28 862个。此外,建设维护总成本对停车需求不确定性水平较敏感,会随着停车需求不确定性的提升而增大,在停车需求不确定性水平分别为0.4,0.5,0.6时,停车设施建设和维护的相对总成本变化率分别为1.25,1.75,2.25,而在同一置信水平下,停车需求不确定性越高,相对总成本变化率越大,相对总成本对需求不确定性也较敏感。本研究对停车设施选址规划者,通过掌控设施点的停车容量与需求波动的情况,来有效地控制系统总成本,保证选址方案的鲁棒性。Abstract: To address the issue of parking facility location under uncertain demand, a method for planning parking facility locations based on Internet mobility data is proposed. This method estimates parking demand and identifies alternative parking facility locations based on residents' commuting data. An optimization model for parking facility location under uncertain demand is developed, which has an objective function considering the construction and maintenance costs of parking facilities and the walking distance from parking facilities. To verify the feasibility of the model, a case study is conducted based on the residents' commuting data in Beijing from September to November in 2021. specifically, an optimization model is established for the area of Zhongguanchun and its surrounding areas in Haidian District and the relationship between variation of the total costs of building and maintaining the parking facilities and uncertainty of parking demand is analyzed. Study results show that the optimal number and size of parking facilities will increase as the confidence interval of satisfying the parking demand (i.e., the probability of parking demand being smaller than or equal to the capacity of parking facilities) increases. When the confidence level reaches 0.9, the variation rate of total cost is significantly increased, where the number of parking facility required is 30 with a total of 28 862 parking spots. In addition, the total system cost is sensitive to the level of uncertainty of parking demand and will increase as the level of uncertainty increases. when the level of uncertainty reaches 0.4, 0.5, and 0.6, the variation rate of relative total cost for parking facility is 1.25, 1.75, and 2.25, respectively. Under the same confidence interval, the higher the level of uncertainty of parking demand, the higher the change rate of total cost is to the level of the uncertainty of the demand. This study enables parking planners to effectively control the total system cost and to ensure the robustness of the location plan by controlling the capacity and demand fluctuations of the parking facilities.
-
表 1 居民通勤数据示例
Table 1. Residential commuter data example
起点经度/(°) 起点纬度/(°) 终点经度/(°) 终点纬度/(°) 驾车人数/人 116.352 58 40.025 653 116.181 09 40.161 566 1 116.366 68 40.011 251 116.302 07 39.858 236 2 116.370 20 40.003 150 116.340 83 40.032 853 4 116.372 55 40.0103 51 116.296 20 39.896 040 1 表 2 停车需求点到备选停车设施点之间的距离
Table 2. Distance from parking demand point to alternative parking facility
单位: m A D 1 2 … 87 88 1 1 077.57 1 318.09 … 1 029.59 506.43 2 1 810.18 1 608.66 … 1 716.60 1 045.76 3 1 295.63 957.55 … 1 328.96 902.42 4 1 316.63 1 259.25 … 1 276.30 713.81 ⋮ ⋮ ⋮ ⋮ ⋮ 39 510.84 1 250.07 … 338.77 842.48 40 723.34 1 069.24 … 979.65 1 172.67 表 3 停车需求点的停车需求数目
Table 3. Parking demands at the parking demand point
需求点 需求量/个 1 398 2 394 3 372 ⋮ ⋮ 86 104 87 101 88 100 表 4 模型假定参数
Table 4. Model assumed parameters
表 5 容量排名前10的停车设施点
Table 5. Top 10 parking facilities by capacity
编号 选址位置的POI 容量/个 11 知春东里社区 1512 24 万泉小学 1135 21 苏州街地铁站 1115 13 双榆树中街 1068 28 北京市海淀区妇幼保健院东南院区 1062 26 品质伊网 956 18 汇新家园 686 22 艾瑟顿国际公寓 583 12 中航广场 489 25 万泉新新家园26号 382 表 6 设计容量排名前10的停车设施点及停车需求量
Table 6. Top 10 parking facilities by capacity and parking demand
编号 选址位置的POI 需求量/个 11 知春东里社区 1479 24 万泉小学 1053 21 苏州街地铁站 1035 13 双榆树中街 971 28 北京市海淀区妇幼保健院东南院区 970 26 品质伊骊 945 18 汇新家园 651 22 艾瑟顿国际公寓 619 12 中航广场 492 25 万泉新新家园26号 365 表 7 不同置信水平下的选址方案
Table 7. Parking location at different confidence levels
$p_{j}$ $C L$ $P$ $P V$ $T$ $R C C$ $R C \%$ 0.50 0.50 28 22118 3959242 1459814 58.4 0.45 0.55 28 22719 4066043 1566615 62.7 0.40 0.60 28 23344 4177392 1677964 67.1 0.35 0.65 29 24009 4320614 1821186 72.9 0.30 0.70 29 24721 4460560 1961132 78.5 0.25 0.75 29 25513 4614234 2114806 84.6 0.20 0.80 28 26414 4863813 2364385 94.6 0.15 0.85 29 27483 5064700 2565272 102.6 0.10 0.90 30 28862 5399144 2899716 116.0 0.05 0.95 30 30963 5882328 3382900 135.3 0.01 0.99 31 35052 6895008 4395580 175.9 -
[1] 李超. 城市商圈停车特性与停车选择研究[D]. 重庆: 重庆交通大学, 2014.LI C. Research on parking characteristics and parking choices in urban commercial circles[D]. Chongqing : Chongqing Jiaotong University, 2014. (in Chinese) [2] 黄睿. 我国城市中心商业区停车问题现状及发展对策研究[D]. 西安: 西安建筑科技大学, 2003.HUNG R. Research on the current situation and development countermeasures of parking problems in my country's urban central business districts[D]. Xi'an: Xi'an University of Architecture and Technology, 2003. (in Chinese) [3] GARCÍA-PALOMARES J C, GUTIÉRREZ J, LATORRE M. Optimizing the location of stations in bike-sharing programs: A GIS approach[J]. Applied Geography, 2012, 35(1): 235-246. [4] 汪光焘. 大数据时代城市交通学发展的机遇[J]. 城市交通, 2016, 14(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201601001.htmWANG G T. Opportunities for the development of urban transportation in the era of big data[J]. Urban Transportation, 2016, 14(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201601001.htm [5] 郑敏慧. 基于滴滴网约车OD数据的停车规划方法研究[D]. 北京: 北京交通大学, 2018.ZHENG M H. Research on parking planning method based on Didi. com car-hailing OD data[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese) [6] GUAN Y, WANG Y, YAN X, et al. A big-data-driven framework for parking demand estimation in urban central districts[J]. Journal of Advanced Transportation, 2020, (3): 1-13. [7] 郭彦茹, 罗志雄, 王家川, 等. 数据驱动的共享单车停放区规划方法研究[J]. 交通运输系统工程与信息, 2021, 21(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202106002.htmGUO Y R, LUO Z X, WANG J C, et al. Research on data-driven shared bicycle parking area planning method[J]. Transportation Systems Engineering and Information, 2021, 21(6): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202106002.htm [8] KIM K, KOSHIZUKA N. Data-driven parking decisions: proposal of parking availability prediction model[C]. 16th International IEEE Conference, Charlotte, USA: IEEE, 2019. [9] LI M, GAO S, LIANG Y, et al. A data-driven approach to understanding and predicting the spatiotemporal availability of street parking[C]. 27th ACM SIGSPATIAL International Conference, Chicago, USA: Association for Computing Machinery, 2019. [10] FIEZ T, RATLIFF L J, DOWLING C, et al. Data driven spatio-temporal modeling of parking demand[C]. 2018 Annual American Control Conference(ACC), Milwaukee, USA: IEEE, 2018. [11] SANDOVAL R, VAN GEFFEN C, WILBUR M, et al. Data driven methods for effective micromobility parking[J]. Transportation Research Interdisciplinary Perspectives, 2021 (10): 100368. [12] 陈峻, 王炜, 胡克定. 城市社会停车场选址规划模型研究[J]. 公路交通科技, 2000(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200001015.htmCHEN J, WANG W, HU K. Research on the planning model of urban social parking lot site selection[J]. Highway Traffic Science and Technology, 2000(1): 61-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200001015.htm [13] HSU Y T, YAN S, HUANG P. The depot and charging facility location problem for electrifying urban bus services[J]. Transportation Research Part D: Transport and Environment, 2021(100): 103053. [14] 杨宇. 城市共享新能源汽车选址-分配研究[D]. 北京: 中国矿业大学, 2019.YANG YU. Urban shared new energy vehicle site selection-allocation research[D]. Beijing: China University of Mining and Technology, 2019. (in Chinese) [15] 邹志云. 社会公共停车场选址方法研究[J]. 武汉城市建设学院学报, 1996(4): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ604.015.htmZOU Z Y. Research on the method of site selection of social public parking lot[J]. Journal of Wuhan Urban Construction Institute, 1996(4): 70-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ604.015.htm [16] SAIF A, DELAGE E. Data-driven distributionally robust capacitated facility location problem[J]. European Journal of Operational Research, 2021, 291(3): 995-1007. [17] HAMERLY G, ELKAN C. Learning the k in k-means[C]. 17th Annual Conference on Neural Information Processing Systems(NIPS 2003), Vancouver, Canada: Biologische Kybernetik, 2004. [18] GABREL V, LACROIX M, MURAT C, et al. Robust location transportation problems under uncertain demands[J]. Discrete Applied Mathematics, 2014(164): 100-111. [19] NG M, WALLER S T. Reliable evacuation planning via demand inflation and supply deflation[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46 (6): 1086-1094. [20] LI Z. Optimal robust optimization approximation for chance constrained optimization problem[J]. Computers & Chemical Engineering, 2015(74): 89-99. [21] 中华人民共和国建设部. 城市道路交通规划设计规范: GB 50220—95[S]. 北京: 人民交通出版社, 1995.Ministry of Construction of the People's Republic of China. Urban road traffic planning and design code: GB 50220-95[S]. Beijing: China Communications Press, 1995.