An Assessment of Road Conditions and Traffic Situations Impact on Multi-type Single and Chain Conflicts
-
摘要: 交通冲突为交通事故发生前的潜在状态。探究静态路段属性和动态交通流特性等宏观特征对于交通冲突的影响至关重要,但现有研究主要关注2辆车之间的危险状态,对于涉及多个交通主体的冲突缺乏重视。为有效提取包括单一冲突和连锁冲突在内的多类型交通冲突,基于无人机采集的车辆轨迹数据首先识别车辆对之间的单一冲突,另通过关联匹配辨识连锁冲突,并基于聚类将连锁冲突划分为纵向风险下降模式、纵向风险增加模式和横纵向高风险持续模式。构建巢式Logit模型探究宏观交通属性及路段条件对多类型单一冲突和连锁冲突的影响,结果表明合流区和基本路段为单一冲突的高发区域,而分流区和交织区为连锁冲突高发区域,尤其会导致横纵向高风险持续模式的发生,但车道数的增加有助于减少严重连锁冲突的发生。此外,主线交通密度增大,连锁冲突发生概率增加;匝道与主线的流量比增大时,连锁冲突更易发生,其中纵向风险增加模式对交通流量最为敏感。将各类型冲突发生的交通流条件与宏观基本图结合分析,表明各类型交通冲突的发生次数存在峰值,且路段上交通冲突发生最多的临界密度要高于同一路段宏观基本图的临界密度。研究结论有助于理解多车连锁冲突发生的宏观原因,有效阻断其演化为连锁碰撞。Abstract: Traffic conflict is the underlying state before a traffic crash occurs. Understanding the impact of static road attributes and dynamic characteristics of traffic flow on traffic crashes is crucial. However, existing research primarily focuses on the hazardous states between two vehicles, neglecting events involving multiple traffic entities. To effectively extract various types of traffic conflicts, including both single and chain conflicts, this study utilizes drone-acquired vehicle trajectory data to identify single conflicts between vehicles and subsequently identifies chain conflicts through association matching. In addition, a chain conflict can be divided into three patterns, i.e., Longitudinal Risk-Decrease Pattern, Longitudinal Risk-Increase Pattern, and Comprehensive High-Risk-Persistent Pattern. Subsequently, a nested Logit model is developed to explore the influence of macroscopic traffic attributes and road conditions on various types of single and chain conflicts. The findings reveal that merging segments and basic segments of roads are high-risk regions for single conflicts, while diverging segments and weaving segments are prone to happen chain conflicts, particularly those of comprehensive high-risk persistent pattern. Interestingly, an increase in the number of lanes helps mitigate severe chain conflicts. Additionally, as the traffic density in mainlines rises, the probability of chain conflicts increases. The volume ratio of ramp to mainline correlates positively with chain conflict occurrence in which the Longitudinal Risk Increase Pattern being the most sensitive. The traffic flow conditions under which each type of conflict occurs, combined with the analysis of macroscopic fundamental diagrams, indicate that conflict occurrences exhibit peaks. Moreover, the critical density at which conflicts are the most frequent on road segments exceeds the critical density indicated by the macroscopic fundamental diagram for the same segment. These conclusions hold substantial importance for understanding the macro causes of multi-vehicle chain conflicts, and for effectively preventing their evolution into chain collisions.
-
表 1 不同连锁冲突演化模式特征均值
Table 1. Mean characteristics of different chain conflict evolution patterns
模式特征 连锁冲突演化模式 纵向风险下降模式 纵向风险增加模式 横纵向高风险持续模式 冲突风险强度 0.20 0.56 0.45 风险变化趋势 -0.03 0.04 0.10 传播速度比 2.64 2.32 2.04 传播次数 2.57 4.07 6.55 传播方向 纵向 纵向 横纵向 表 2 影响因素及其参数
Table 2. Influence factors and their parameters
变量类型 变量名称 变量符号 参数符号 道路几何特征 车道数 βL βL 路段类别(是否为合流区、是否为分流区、是否为交织区) $C_1, C_2, C_3$ $\beta_{C 1}, \beta_{C 2}, \beta_{C 3}$ 交通流特征 道路主线速度 V βV 道路主线密度 O βO 道路主线流量 Q βQ 匝道与主线的密度比(若有匝道) D βD 匝道与主线的流量比(若有匝道) R βR 表 3 关于不同交通冲突模式的巢式Logit模型参数标定结果
Table 3. Parameter calibration results of nested Logit model for different traffic conflict patterns
参数 单一冲突 连锁交通冲突(纵向风险下降模式) 连锁交通冲突(纵向风险增加模式) 连锁交通冲突(横纵向高风险持续模式) βL 1.010(0.329)** 0.151(0.045)*** -0.194(0.033)*** βC1 1.120(0.071)*** -0.381(0.027)*** -0.425(0.027)*** -0.318(0.024)*** βC2 0.227(0.052)*** βC3 -0.431(0.074)*** 0.053(0.025)* 0.118(0.027)*** 0.260(0.038)*** βO -5.880(0.133)*** 1.790(0.064)*** 1.970(0.045)*** 2.110(0.070)*** βQ 0.193(0.040)*** -0.069(0.013)*** -0.079(0.015)*** -0.045(0.015)** βD 0.183(0.111). -0.022(0.013). βR -0.330(0.100)*** 0.100(0.032)** 0.116(0.034)*** 0.115(0.034)*** ASC 0.957(0.186)*** -0.301(0.077)*** -0.281(0.079)*** -0.375(0.061)*** λ 1.000 13.200(4.090)** 统计量 LL(β) -16 559.560 ρ2 0.232 AIC 33 181.110 注:“***”-p<0.001;“**”-p<0.010;“*”-p<0.050;“.”-p<0.100。 -
[1] YASMIN S, ELURU N, WANG L, et al. A joint framework for static and real-time crash risk analysis[J]. Analytic Meth-ods in Accident Research, 2018(18): 45-56. [2] YANG B, LIU P, CHAN C Y, et al. Identifying the crash char-acteristics on freeway segments based on different ramp influ-ence areas[J]. Traffic Injury Prevention, 2019, 20(4): 386-391. doi: 10.1080/15389588.2019.1588965 [3] ZHENG Q, XU C, LIU P, et al. Investigating the predictabili-ty of crashes on different freeway segments using the re-al-time crash risk models[J]. Accident Analysis & Prevention, 2021(159): 106213. [4] WANG L, ABDEL-ATY M, SHI Q, et al. Real-time crash pre-diction for expressway weaving segments[J]. Transportation Research Part C: Emerging Technologies, 2015(61): 1-10. [5] RIM H, ABDEL-ATY M, MAHMOUD N. Multi-vehicle safe-ty functions for freeway weaving segments using lane-level traffic data[J]. Accident Analysis & Prevention, 2023(188): 107113. [6] HOU Q, TARKO A P, MENG X. Investigating factors of crash frequency with random effects and random parameters models: new insights from Chinese freeway study[J]. Acci-dent Analysis & Prevention, 2018, 120: 1-12. [7] YUAN C, LI Y, HUANG H, et al. Using traffic flow charac-teristics to predict real-time conflict risk: a novel method for trajectory data analysis[J]. Analytic Methods in Accident Re-search, 2022, 35: 100217. doi: 10.1016/j.amar.2022.100217 [8] LI D, FU C, SAYED T, et al. An integrated approach of ma-chine learning and Bayesian spatial Poisson model for large-scale real-time traffic conflict prediction[J]. Accident Analysis & Prevention, 2023, 192: 107286. [9] ABDEL-ATY M, WANG L. Implementation of variable speed limits to improve safety of congested expressway weaving segments in microsimulation[J]. Transportation Research Pro-cedia, 2017, 27: 577-584. doi: 10.1016/j.trpro.2017.12.061 [10] WANG L, ZOU L, ABDEL-ATY M, et al. Expressway rear-end crash risk evolution mechanism analysis under dif-ferent traffic states[J]. Transportmetrica B: Transport Dynam-ics, 2023, 11(1): 510-527. doi: 10.1080/21680566.2022.2101565 [11] 张吉光. 高速公路汽车连环追尾风险研究[D]. 长沙: 长沙理工大学, 2012.ZHANG J G. Risk study of multiple rear-end collisions on expressway[D]. Changsha: Changsha University of Science and Technology, 2012. (in Chinese) [12] SUGIYAMA N, NAGATANI T. Multiple-vehicle collision in-duced by a sudden stop in traffic flow[J]. Physics Letters A, 2012, 376(22): 1803-1806. doi: 10.1016/j.physleta.2012.04.024 [13] NAGATANI T, YONEKURA S. Multiple-vehicle collision induced by lane changing in traffic flow[J]. Physica A: Statis-tical Mechanics and its Applications, 2014(404): 171-179. [14] NAGATANI T. Effect of vehicular size on chain-reaction crash[J]. Physica A: Statistical Mechanics and its Applica-tions, 2015, 438: 132-139. doi: 10.1016/j.physa.2015.06.045 [15] NAGATANI T. Chain-reaction crash on a highway in high visibility[J]. Physica A: Statistical Mechanics and its Applica-tions, 2016, 450: 466-472. doi: 10.1016/j.physa.2016.01.031 [16] 李熙莹, 梁靖茹, 郝腾龙. 考虑连锁冲突的城市公交车行车风险量化分析方法[J]. 交通信息与安全, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003?viewType=HTMLLI X Y, LIANG J R, HAO T L. A method for quantitatively analyzing risks associated with the operation of urban buses considering chained conflicts[J]. Journal of Transport Infor-mation and Safety, 2022, 40(3): 19-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.003?viewType=HTML [17] 朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htmZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm [18] MA W, ZHONG H, WANG L, et al. MAGIC dataset: multi-ple conditions unmanned aerial vehicle group-based high-fi-delity comprehensive vehicle trajectory dataset[J]. Transpor-tation Research Record, 2022, 2676(5): 793-805. doi: 10.1177/03611981211070549 [19] OZBAY K, YANG H, BARTIN B, et al. Derivation and vali-dation of new simulation-based surrogate safety measure[J]. Transportation Research Record, 2008, 2083(1): 105-113. doi: 10.3141/2083-12 [20] ZHONG H, WANG L, SU Z, et al. Characteristics identification and evolution patterns analyses of road chain con-flicts[J]. Accident Analysis & Prevention, 2024, 195: 107395. [21] JOO Y J, KIM E J, KIM D K, et al. A generalized driving risk assessment on high-speed highways using field theo-ry[J]. Analytic Methods in Accident Research, 2023, 40: 100303. doi: 10.1016/j.amar.2023.100303 [22] JEONG E, OH C, LEE S. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driv-ing environments for traffic safety[J]. Accident Analysis & Prevention, 2017, 104: 115-124. [23] YUAN C, LI Y, HUANG H, et al. Using traffic flow charac-teristics to predict real-time conflict risk: a novel method for trajectory data analysis[J]. Analytic Methods in Accident Re-search, 2022, 35: 100217. doi: 10.1016/j.amar.2022.100217 [24] MANAN M M A, VARHELYI A, ÇELIK A K, et al. Road characteristics and environment factors associated with mo-torcycle fatal crashes in Malaysia[J]. IATSS Research, 2018, 42(4): 207-220. doi: 10.1016/j.iatssr.2017.11.001 [25] 蒋晓丹, 范厚明, 张琰雪, 等. 港口与运输方式及陆港联合选择的巢式Logit模型[J]. 交通运输系统工程与信息, 2018, 18(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805006.htmJIANG X D, FAN H M, ZHANG Y X. Nested Logit model for the joint choice of seaport, inland mode and dry port[J]. Journal of Transportation Systems Engineering and Informa-tion Technology, 2018, 18(5): 32-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805006.htm [26] 张戎, 李璐, 简文良. 城市货运车辆选择行为模型及应用[J]. 交通运输系统工程与信息, 2018, 18(4): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201804021.htmZHANG R, LI L, JIAN W L. Urban Freight vehicle type choice model and application[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4): 135-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201804021.htm [27] HOU Q, TARKO A P, MENG X. Investigating factors of crash frequency with random effects and random parameters models: new insights from Chinese freeway study[J]. Acci-dent Analysis & Prevention, 2018, 120: 1-12. [28] MENG F, XU P, SONG C, et al. Influential factors associat-ed with consecutive crash severity: a two-level logistic mod-eling approach[J]. International Journal of Environmental Re-search and Public Health, 2020, 17(15): 5623. doi: 10.3390/ijerph17155623